REPRESENTATION THEOREMS OF LINEAR OPERATORS ON P-ADIC FUNCTION SPACES
Let X be a 0-dimensional Hausforff topological space, E; F nonarchimedean Banach spaces and Cb (X;E) the space of all continuous E-valued functions on X provided with two strict topologies. In this paper we show that every F ¡valued linear operator which is strictly continuous can be represented by...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2004
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000200003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let X be a 0-dimensional Hausforff topological space, E; F nonarchimedean Banach spaces and Cb (X;E) the space of all continuous E-valued functions on X provided with two strict topologies. In this paper we show that every F ¡valued linear operator which is strictly continuous can be represented by a certain L(E; F)¡valued measure defined on the ring of all clopen subsets of X |
---|