THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE

Let p > 1 be an integer. We consider an unweighted balanced tree Bp k of k levels with a root vertex of degree 2p, vertices from the level 2 until the level (k - 1) of degree 2p +1 and vertices in the level k of degree 1. The case p = 1 it was studied in [8, 9, 10]. We prove that the spectrum of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: ROJO,OSCAR
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2004
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000200006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Let p > 1 be an integer. We consider an unweighted balanced tree Bp k of k levels with a root vertex of degree 2p, vertices from the level 2 until the level (k - 1) of degree 2p +1 and vertices in the level k of degree 1. The case p = 1 it was studied in [8, 9, 10]. We prove that the spectrum of the Laplacian matrix L (Bp k) is &#963; (L (Bp k)) = Uk j =1&#963; (T(p) j where, for 1< j < k < 1, T(p)j is the j ×j principal submatrix of the tridiagonal k×k singular matrix T(p)k , scanear fórmula We derive that the multiplicity of each eigenvalue of Tj , as an eigenvalue of L (Bp k) , is at least 2(2p-1)2(k-j-1)p . Moreover, we show that the multiplicity of the eigenvalue &#955; = 1 of L (Bp k) is exactly 2(2p-1)2(k-2)p. Finally, we prove that 3, 7 <IMG SRC="http:/fbpe/img/proy/v23n2/e.jpg" WIDTH=18 HEIGHT=16>&#963; (L (B²k)) if and only if k is a multiple of 3, that 5 <IMG SRC="http:/fbpe/img/proy/v23n2/e.jpg" WIDTH=18 HEIGHT=16>&#963; (L (B2k) if and only if k is an even number, and that no others integer eigenvalues exist for L (B²k).