THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE
Let p > 1 be an integer. We consider an unweighted balanced tree Bp k of k levels with a root vertex of degree 2p, vertices from the level 2 until the level (k - 1) of degree 2p +1 and vertices in the level k of degree 1. The case p = 1 it was studied in [8, 9, 10]. We prove that the spectrum of...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2004
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000200006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172004000200006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720040002000062004-09-29THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREEROJO,OSCAR Tree balanced tree binary tree n-ary tree Laplacian matrix Let p > 1 be an integer. We consider an unweighted balanced tree Bp k of k levels with a root vertex of degree 2p, vertices from the level 2 until the level (k - 1) of degree 2p +1 and vertices in the level k of degree 1. The case p = 1 it was studied in [8, 9, 10]. We prove that the spectrum of the Laplacian matrix L (Bp k) is σ (L (Bp k)) = Uk j =1σ (T(p) j where, for 1< j < k < 1, T(p)j is the j ×j principal submatrix of the tridiagonal k×k singular matrix T(p)k , scanear fórmula We derive that the multiplicity of each eigenvalue of Tj , as an eigenvalue of L (Bp k) , is at least 2(2p-1)2(k-j-1)p . Moreover, we show that the multiplicity of the eigenvalue λ = 1 of L (Bp k) is exactly 2(2p-1)2(k-2)p. Finally, we prove that 3, 7 <IMG SRC="http:/fbpe/img/proy/v23n2/e.jpg" WIDTH=18 HEIGHT=16>σ (L (B²k)) if and only if k is a multiple of 3, that 5 <IMG SRC="http:/fbpe/img/proy/v23n2/e.jpg" WIDTH=18 HEIGHT=16>σ (L (B2k) if and only if k is an even number, and that no others integer eigenvalues exist for L (B²k).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.23 n.2 20042004-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000200006en10.4067/S0716-09172004000200006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Tree balanced tree binary tree n-ary tree Laplacian matrix |
spellingShingle |
Tree balanced tree binary tree n-ary tree Laplacian matrix ROJO,OSCAR THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE |
description |
Let p > 1 be an integer. We consider an unweighted balanced tree Bp k of k levels with a root vertex of degree 2p, vertices from the level 2 until the level (k - 1) of degree 2p +1 and vertices in the level k of degree 1. The case p = 1 it was studied in [8, 9, 10]. We prove that the spectrum of the Laplacian matrix L (Bp k) is σ (L (Bp k)) = Uk j =1σ (T(p) j where, for 1< j < k < 1, T(p)j is the j ×j principal submatrix of the tridiagonal k×k singular matrix T(p)k , scanear fórmula We derive that the multiplicity of each eigenvalue of Tj , as an eigenvalue of L (Bp k) , is at least 2(2p-1)2(k-j-1)p . Moreover, we show that the multiplicity of the eigenvalue λ = 1 of L (Bp k) is exactly 2(2p-1)2(k-2)p. Finally, we prove that 3, 7 <IMG SRC="http:/fbpe/img/proy/v23n2/e.jpg" WIDTH=18 HEIGHT=16>σ (L (B²k)) if and only if k is a multiple of 3, that 5 <IMG SRC="http:/fbpe/img/proy/v23n2/e.jpg" WIDTH=18 HEIGHT=16>σ (L (B2k) if and only if k is an even number, and that no others integer eigenvalues exist for L (B²k). |
author |
ROJO,OSCAR |
author_facet |
ROJO,OSCAR |
author_sort |
ROJO,OSCAR |
title |
THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE |
title_short |
THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE |
title_full |
THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE |
title_fullStr |
THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE |
title_full_unstemmed |
THE SPECTRUM OF THE LAPLACIAN MATRIX OF A BALANCED 2p-ARY TREE |
title_sort |
spectrum of the laplacian matrix of a balanced 2p-ary tree |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2004 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000200006 |
work_keys_str_mv |
AT rojooscar thespectrumofthelaplacianmatrixofabalanced2parytree AT rojooscar spectrumofthelaplacianmatrixofabalanced2parytree |
_version_ |
1718439737251856384 |