ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE
We study the problem of lifting an Abelian group H of automorphisms of a closed Riemann surface S (containing anticonformals ones) to a suitable Schottky uniformization of S (that is, when H is of Schottky type). If H+ is the index two subgroup of orientation preserving automorphisms of H and R = S/...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2004
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We study the problem of lifting an Abelian group H of automorphisms of a closed Riemann surface S (containing anticonformals ones) to a suitable Schottky uniformization of S (that is, when H is of Schottky type). If H+ is the index two subgroup of orientation preserving automorphisms of H and R = S/H+, then H induces an anticonformal automorphism τ : R -> R. If τ has fixed points, then we observe that H is of Schottky type. If τ has no fixed points, then we provide a su.cient condition for H to be of Schottky type. We also give partial answers for the excluded cases |
---|