ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE

We study the problem of lifting an Abelian group H of automorphisms of a closed Riemann surface S (containing anticonformals ones) to a suitable Schottky uniformization of S (that is, when H is of Schottky type). If H+ is the index two subgroup of orientation preserving automorphisms of H and R = S/...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: HIDALGO,RUBÉN
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2004
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We study the problem of lifting an Abelian group H of automorphisms of a closed Riemann surface S (containing anticonformals ones) to a suitable Schottky uniformization of S (that is, when H is of Schottky type). If H+ is the index two subgroup of orientation preserving automorphisms of H and R = S/H+, then H induces an anticonformal automorphism τ : R -> R. If τ has fixed points, then we observe that H is of Schottky type. If τ has no fixed points, then we provide a su.cient condition for H to be of Schottky type. We also give partial answers for the excluded cases