ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE
We study the problem of lifting an Abelian group H of automorphisms of a closed Riemann surface S (containing anticonformals ones) to a suitable Schottky uniformization of S (that is, when H is of Schottky type). If H+ is the index two subgroup of orientation preserving automorphisms of H and R = S/...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2004
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172004000300001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720040003000012005-02-03ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPEHIDALGO,RUBÉNWe study the problem of lifting an Abelian group H of automorphisms of a closed Riemann surface S (containing anticonformals ones) to a suitable Schottky uniformization of S (that is, when H is of Schottky type). If H+ is the index two subgroup of orientation preserving automorphisms of H and R = S/H+, then H induces an anticonformal automorphism τ : R -> R. If τ has fixed points, then we observe that H is of Schottky type. If τ has no fixed points, then we provide a su.cient condition for H to be of Schottky type. We also give partial answers for the excluded casesinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.23 n.3 20042004-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300001en10.4067/S0716-09172004000300001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
description |
We study the problem of lifting an Abelian group H of automorphisms of a closed Riemann surface S (containing anticonformals ones) to a suitable Schottky uniformization of S (that is, when H is of Schottky type). If H+ is the index two subgroup of orientation preserving automorphisms of H and R = S/H+, then H induces an anticonformal automorphism τ : R -> R. If τ has fixed points, then we observe that H is of Schottky type. If τ has no fixed points, then we provide a su.cient condition for H to be of Schottky type. We also give partial answers for the excluded cases |
author |
HIDALGO,RUBÉN |
spellingShingle |
HIDALGO,RUBÉN ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE |
author_facet |
HIDALGO,RUBÉN |
author_sort |
HIDALGO,RUBÉN |
title |
ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE |
title_short |
ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE |
title_full |
ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE |
title_fullStr |
ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE |
title_full_unstemmed |
ABELIAN AUTOMORPHISMS GROUPS OF SCHOTTKY TYPE |
title_sort |
abelian automorphisms groups of schottky type |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2004 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300001 |
work_keys_str_mv |
AT hidalgoruben abelianautomorphismsgroupsofschottkytype |
_version_ |
1718439737825427456 |