UNIFORM STABILIZATION OF A PLATE EQUATION WITH NONLINEAR LOCALIZED DISSIPATION

We study the existence and uniqueness of a plate equation in a bounded domain of Rn, with a dissipative nonlinear term, localized in a neighborhood of part of the boundary of the domain. We use techniques from control theory, the unique continuation property and Nakao method to prove the uniform sta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: PAZOTO,ADEMIR F., COELHO,LUCICLÉIA, COIMBRA CHARAO,RUY
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2004
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We study the existence and uniqueness of a plate equation in a bounded domain of Rn, with a dissipative nonlinear term, localized in a neighborhood of part of the boundary of the domain. We use techniques from control theory, the unique continuation property and Nakao method to prove the uniform stabilization of the energy of the system with algebraic decay rates depending on the order of the nonlinearity of the dissipative term.