UNIFORM STABILIZATION OF A PLATE EQUATION WITH NONLINEAR LOCALIZED DISSIPATION
We study the existence and uniqueness of a plate equation in a bounded domain of Rn, with a dissipative nonlinear term, localized in a neighborhood of part of the boundary of the domain. We use techniques from control theory, the unique continuation property and Nakao method to prove the uniform sta...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2004
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We study the existence and uniqueness of a plate equation in a bounded domain of Rn, with a dissipative nonlinear term, localized in a neighborhood of part of the boundary of the domain. We use techniques from control theory, the unique continuation property and Nakao method to prove the uniform stabilization of the energy of the system with algebraic decay rates depending on the order of the nonlinearity of the dissipative term. |
---|