UNIFORM BOUNDEDNESS IN VECTOR - VALUED SEQUENCE SPACES

Let µ be a normal scalar sequence space which is a K-space under the family of semi-norms M and let X be a locally convex space whose topology is generated by the family of semi-norms X. The space µ{X} is the space of all X valued sequences chi = {<FONT FACE=Symbol>c k</FONT>} such that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: SWARTZ,CHARLES
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2004
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172004000300003
record_format dspace
spelling oai:scielo:S0716-091720040003000032005-02-03UNIFORM BOUNDEDNESS IN VECTOR - VALUED SEQUENCE SPACESSWARTZ,CHARLESLet µ be a normal scalar sequence space which is a K-space under the family of semi-norms M and let X be a locally convex space whose topology is generated by the family of semi-norms X. The space µ{X} is the space of all X valued sequences chi = {<FONT FACE=Symbol>c k</FONT>} such that {q(<FONT FACE=Symbol>c k</FONT>)} <FONT FACE=Symbol>Î</FONT>µ{X} for all q <FONT FACE=Symbol>Î</FONT> X. The space µ{X} is given the locally convex topology generated by the semi-norms <FONT FACE=Symbol>ðp</FONT>pq(chi) = p({q(<FONT FACE=Symbol>c k</FONT>)}), p <FONT FACE=Symbol>Î</FONT> X, q <FONT FACE=Symbol>Î</FONT> M. We show that if µ satisfies a certain multiplier type of gliding hump property, then pointwise bounded subsets of the â-dual of µ{X} with respect to a locally convex space are uniformly bounded on bounded subsets of µ{X}info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.23 n.3 20042004-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300003en10.4067/S0716-09172004000300003
institution Scielo Chile
collection Scielo Chile
language English
description Let µ be a normal scalar sequence space which is a K-space under the family of semi-norms M and let X be a locally convex space whose topology is generated by the family of semi-norms X. The space µ{X} is the space of all X valued sequences chi = {<FONT FACE=Symbol>c k</FONT>} such that {q(<FONT FACE=Symbol>c k</FONT>)} <FONT FACE=Symbol>Î</FONT>µ{X} for all q <FONT FACE=Symbol>Î</FONT> X. The space µ{X} is given the locally convex topology generated by the semi-norms <FONT FACE=Symbol>ðp</FONT>pq(chi) = p({q(<FONT FACE=Symbol>c k</FONT>)}), p <FONT FACE=Symbol>Î</FONT> X, q <FONT FACE=Symbol>Î</FONT> M. We show that if µ satisfies a certain multiplier type of gliding hump property, then pointwise bounded subsets of the â-dual of µ{X} with respect to a locally convex space are uniformly bounded on bounded subsets of µ{X}
author SWARTZ,CHARLES
spellingShingle SWARTZ,CHARLES
UNIFORM BOUNDEDNESS IN VECTOR - VALUED SEQUENCE SPACES
author_facet SWARTZ,CHARLES
author_sort SWARTZ,CHARLES
title UNIFORM BOUNDEDNESS IN VECTOR - VALUED SEQUENCE SPACES
title_short UNIFORM BOUNDEDNESS IN VECTOR - VALUED SEQUENCE SPACES
title_full UNIFORM BOUNDEDNESS IN VECTOR - VALUED SEQUENCE SPACES
title_fullStr UNIFORM BOUNDEDNESS IN VECTOR - VALUED SEQUENCE SPACES
title_full_unstemmed UNIFORM BOUNDEDNESS IN VECTOR - VALUED SEQUENCE SPACES
title_sort uniform boundedness in vector - valued sequence spaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2004
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172004000300003
work_keys_str_mv AT swartzcharles uniformboundednessinvectorvaluedsequencespaces
_version_ 1718439738296238080