REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2005
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172005000100006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720050001000062005-07-06REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*SOTO,RICARDO L symmetric nonnegative inverse eigenvalue problem Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.24 n.1 20052005-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006en10.4067/S0716-09172005000100006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
symmetric nonnegative inverse eigenvalue problem |
spellingShingle |
symmetric nonnegative inverse eigenvalue problem SOTO,RICARDO L REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES* |
description |
Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ |
author |
SOTO,RICARDO L |
author_facet |
SOTO,RICARDO L |
author_sort |
SOTO,RICARDO L |
title |
REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES* |
title_short |
REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES* |
title_full |
REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES* |
title_fullStr |
REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES* |
title_full_unstemmed |
REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES* |
title_sort |
realizability by symmetric nonnegative matrices* |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2005 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006 |
work_keys_str_mv |
AT sotoricardol realizabilitybysymmetricnonnegativematrices |
_version_ |
1718439740647145472 |