REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*

Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: SOTO,RICARDO L
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2005
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172005000100006
record_format dspace
spelling oai:scielo:S0716-091720050001000062005-07-06REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*SOTO,RICARDO L symmetric nonnegative inverse eigenvalue problem Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.24 n.1 20052005-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006en10.4067/S0716-09172005000100006
institution Scielo Chile
collection Scielo Chile
language English
topic symmetric nonnegative inverse eigenvalue problem
spellingShingle symmetric nonnegative inverse eigenvalue problem
SOTO,RICARDO L
REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
description Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ
author SOTO,RICARDO L
author_facet SOTO,RICARDO L
author_sort SOTO,RICARDO L
title REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
title_short REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
title_full REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
title_fullStr REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
title_full_unstemmed REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
title_sort realizability by symmetric nonnegative matrices*
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2005
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006
work_keys_str_mv AT sotoricardol realizabilitybysymmetricnonnegativematrices
_version_ 1718439740647145472