Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES
In this paper, the notion of Sß-compactness is introduced in Ltopological spaces by means of open ßà-cover. It is a generalization of Lowens strong compactness, but it is different from Wangs strong compactness. Ultra-compactness implies Sß-compactness. Sß-compactness implies fuzzy compactness. Bu...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2005
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000200004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172005000200004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720050002000042005-10-24Sß-COMPACTNESS IN L-TOPOLOGICAL SPACESGUI SHI,FU L-topology ßà-cover Sß-compactness ß-cluster point In this paper, the notion of Sß-compactness is introduced in Ltopological spaces by means of open ßà-cover. It is a generalization of Lowens strong compactness, but it is different from Wangs strong compactness. Ultra-compactness implies Sß-compactness. Sß-compactness implies fuzzy compactness. But in general N-compactness and Wangs strong compactness need not imply Sß-compactnessinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.24 n.2 20052005-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000200004en10.4067/S0716-09172005000200004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
L-topology ßà-cover Sß-compactness ß-cluster point |
spellingShingle |
L-topology ßà-cover Sß-compactness ß-cluster point GUI SHI,FU Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES |
description |
In this paper, the notion of Sß-compactness is introduced in Ltopological spaces by means of open ßà-cover. It is a generalization of Lowens strong compactness, but it is different from Wangs strong compactness. Ultra-compactness implies Sß-compactness. Sß-compactness implies fuzzy compactness. But in general N-compactness and Wangs strong compactness need not imply Sß-compactness |
author |
GUI SHI,FU |
author_facet |
GUI SHI,FU |
author_sort |
GUI SHI,FU |
title |
Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_short |
Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_full |
Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_fullStr |
Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_full_unstemmed |
Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_sort |
sß-compactness in l-topological spaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2005 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000200004 |
work_keys_str_mv |
AT guishifu sßcompactnessinltopologicalspaces |
_version_ |
1718439741846716416 |