Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES

In this paper, the notion of Sß-compactness is introduced in Ltopological spaces by means of open ßà-cover. It is a generalization of Lowen’s strong compactness, but it is different from Wang’s strong compactness. Ultra-compactness implies Sß-compactness. Sß-compactness implies fuzzy compactness. Bu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: GUI SHI,FU
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2005
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000200004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172005000200004
record_format dspace
spelling oai:scielo:S0716-091720050002000042005-10-24Sß-COMPACTNESS IN L-TOPOLOGICAL SPACESGUI SHI,FU L-topology ßà-cover Sß-compactness ß-cluster point In this paper, the notion of Sß-compactness is introduced in Ltopological spaces by means of open ßà-cover. It is a generalization of Lowen’s strong compactness, but it is different from Wang’s strong compactness. Ultra-compactness implies Sß-compactness. Sß-compactness implies fuzzy compactness. But in general N-compactness and Wang’s strong compactness need not imply Sß-compactnessinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.24 n.2 20052005-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000200004en10.4067/S0716-09172005000200004
institution Scielo Chile
collection Scielo Chile
language English
topic L-topology
ßà-cover
Sß-compactness
ß-cluster point
spellingShingle L-topology
ßà-cover
Sß-compactness
ß-cluster point
GUI SHI,FU
Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES
description In this paper, the notion of Sß-compactness is introduced in Ltopological spaces by means of open ßà-cover. It is a generalization of Lowen’s strong compactness, but it is different from Wang’s strong compactness. Ultra-compactness implies Sß-compactness. Sß-compactness implies fuzzy compactness. But in general N-compactness and Wang’s strong compactness need not imply Sß-compactness
author GUI SHI,FU
author_facet GUI SHI,FU
author_sort GUI SHI,FU
title Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_short Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_full Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_fullStr Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_full_unstemmed Sß-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_sort sß-compactness in l-topological spaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2005
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000200004
work_keys_str_mv AT guishifu sßcompactnessinltopologicalspaces
_version_ 1718439741846716416