FIXED POINTS OF A FAMILY OF EXPONENTIAL MAPS

We consider the family of functions ¦l(z) = exp(ilz), l real. With the help of MATLAB computations, we show ¦l has a unique attracting fixed point for several values of l. We prove there is no attracting periodic orbit of period n ³ 2

Guardado en:
Detalles Bibliográficos
Autores principales: BLABAC,ERIC, PETERS,JUSTIN
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2005
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We consider the family of functions ¦l(z) = exp(ilz), l real. With the help of MATLAB computations, we show ¦l has a unique attracting fixed point for several values of l. We prove there is no attracting periodic orbit of period n ³ 2