TOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2

We associate to each Riemann or Klein surface with nodes a graph that classifies it up homeomorphism. We obtain that, for surfaces of genus two, there are 7 topological types of stable Riemann surfaces, 33 topological types of stable Klein surfaces and 35 topological types of symmetric stable Rieman...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: GARIJO,IGNACIO
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2005
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172005000300005
record_format dspace
spelling oai:scielo:S0716-091720050003000052006-03-10TOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2GARIJO,IGNACIOWe associate to each Riemann or Klein surface with nodes a graph that classifies it up homeomorphism. We obtain that, for surfaces of genus two, there are 7 topological types of stable Riemann surfaces, 33 topological types of stable Klein surfaces and 35 topological types of symmetric stable Riemann surfaces (this last type of surfaces corresponds to the new surfaces appearing in the compactification of the Moduli space of real algebraic curves, see [Se] and [Si]info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.24 n.3 20052005-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300005en10.4067/S0716-09172005000300005
institution Scielo Chile
collection Scielo Chile
language English
description We associate to each Riemann or Klein surface with nodes a graph that classifies it up homeomorphism. We obtain that, for surfaces of genus two, there are 7 topological types of stable Riemann surfaces, 33 topological types of stable Klein surfaces and 35 topological types of symmetric stable Riemann surfaces (this last type of surfaces corresponds to the new surfaces appearing in the compactification of the Moduli space of real algebraic curves, see [Se] and [Si]
author GARIJO,IGNACIO
spellingShingle GARIJO,IGNACIO
TOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2
author_facet GARIJO,IGNACIO
author_sort GARIJO,IGNACIO
title TOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2
title_short TOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2
title_full TOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2
title_fullStr TOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2
title_full_unstemmed TOPOLOGICAL CLASSIFICATION OF COMPACT SURFACES WITH NODES OF GENUS 2
title_sort topological classification of compact surfaces with nodes of genus 2
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2005
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300005
work_keys_str_mv AT garijoignacio topologicalclassificationofcompactsurfaceswithnodesofgenus2
_version_ 1718439743929188352