AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS

We prove that for f : <img border=0 width=50 height=19 id="_x0000_i1026" src="http:/fbpe/img/proy/v24n3/img06-01.jpg">a rational mapping of the Riemann sphere of degree at least 2 and W a simply connected immediate basin of attraction to an attracting fixed point, if |(f n)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: PRZYTYCKI,FELIKS
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2005
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172005000300006
record_format dspace
spelling oai:scielo:S0716-091720050003000062006-03-10AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALSPRZYTYCKI,FELIKSWe prove that for f : <img border=0 width=50 height=19 id="_x0000_i1026" src="http:/fbpe/img/proy/v24n3/img06-01.jpg">a rational mapping of the Riemann sphere of degree at least 2 and W a simply connected immediate basin of attraction to an attracting fixed point, if |(f n)'(p)| ³ Cn³+x for constants x > 0, C > 0 all positive integers n and all repelling periodic points p of period n in Julia set for f , then a Riemann mapping R : <img border=0 width=50 height=18 id="_x0000_i1027" src="http:/fbpe/img/proy/v24n3/img06-02.jpg">extends continuously to <img border=0 width=20 height=18 id="_x0000_i1028" src="http:/fbpe/img/proy/v24n3/img06-03.jpg">and FrW is locally connected. This improves a result proved by J. Rivera-Letelier for W the basin of infinity for polynomials, and 5 + x rather than 3 + x.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.24 n.3 20052005-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300006en10.4067/S0716-09172005000300006
institution Scielo Chile
collection Scielo Chile
language English
description We prove that for f : <img border=0 width=50 height=19 id="_x0000_i1026" src="http:/fbpe/img/proy/v24n3/img06-01.jpg">a rational mapping of the Riemann sphere of degree at least 2 and W a simply connected immediate basin of attraction to an attracting fixed point, if |(f n)'(p)| ³ Cn³+x for constants x > 0, C > 0 all positive integers n and all repelling periodic points p of period n in Julia set for f , then a Riemann mapping R : <img border=0 width=50 height=18 id="_x0000_i1027" src="http:/fbpe/img/proy/v24n3/img06-02.jpg">extends continuously to <img border=0 width=20 height=18 id="_x0000_i1028" src="http:/fbpe/img/proy/v24n3/img06-03.jpg">and FrW is locally connected. This improves a result proved by J. Rivera-Letelier for W the basin of infinity for polynomials, and 5 + x rather than 3 + x.
author PRZYTYCKI,FELIKS
spellingShingle PRZYTYCKI,FELIKS
AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS
author_facet PRZYTYCKI,FELIKS
author_sort PRZYTYCKI,FELIKS
title AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS
title_short AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS
title_full AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS
title_fullStr AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS
title_full_unstemmed AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS
title_sort improvement of j: rivera-letelier result on weak hyperbolicity on periodic orbits for polynomials
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2005
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300006
work_keys_str_mv AT przytyckifeliks animprovementofjriveraletelierresultonweakhyperbolicityonperiodicorbitsforpolynomials
AT przytyckifeliks improvementofjriveraletelierresultonweakhyperbolicityonperiodicorbitsforpolynomials
_version_ 1718439744218595328