COUNTABLE S*-COMPACTNESS IN L-SPACES

In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies coun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: QIN YANG,GUI
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2005
Materias:
Qa
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S*-compact L-set and a closed L-set is countably S*-compact. The continuous image of a countably S*-compact L-set is countably S*-compact. A weakly induced L-space (X, T ) is countably S*-compact if and only if (X, [T]) is countably compact