COUNTABLE S*-COMPACTNESS IN L-SPACES

In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies coun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: QIN YANG,GUI
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2005
Materias:
Qa
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172005000300007
record_format dspace
spelling oai:scielo:S0716-091720050003000072006-03-10COUNTABLE S*-COMPACTNESS IN L-SPACESQIN YANG,GUI L-topology ßa-open cover Qa open cover S*-compactness countable S* compactness In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S*-compact L-set and a closed L-set is countably S*-compact. The continuous image of a countably S*-compact L-set is countably S*-compact. A weakly induced L-space (X, T ) is countably S*-compact if and only if (X, [T]) is countably compactinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.24 n.3 20052005-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300007en10.4067/S0716-09172005000300007
institution Scielo Chile
collection Scielo Chile
language English
topic L-topology
ßa-open cover
Qa
open cover
S*-compactness
countable S*
compactness
spellingShingle L-topology
ßa-open cover
Qa
open cover
S*-compactness
countable S*
compactness
QIN YANG,GUI
COUNTABLE S*-COMPACTNESS IN L-SPACES
description In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S*-compact L-set and a closed L-set is countably S*-compact. The continuous image of a countably S*-compact L-set is countably S*-compact. A weakly induced L-space (X, T ) is countably S*-compact if and only if (X, [T]) is countably compact
author QIN YANG,GUI
author_facet QIN YANG,GUI
author_sort QIN YANG,GUI
title COUNTABLE S*-COMPACTNESS IN L-SPACES
title_short COUNTABLE S*-COMPACTNESS IN L-SPACES
title_full COUNTABLE S*-COMPACTNESS IN L-SPACES
title_fullStr COUNTABLE S*-COMPACTNESS IN L-SPACES
title_full_unstemmed COUNTABLE S*-COMPACTNESS IN L-SPACES
title_sort countable s*-compactness in l-spaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2005
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300007
work_keys_str_mv AT qinyanggui countablescompactnessinlspaces
_version_ 1718439744444039168