COUNTABLE S*-COMPACTNESS IN L-SPACES
In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies coun...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2005
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172005000300007 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720050003000072006-03-10COUNTABLE S*-COMPACTNESS IN L-SPACESQIN YANG,GUI L-topology ßa-open cover Qa open cover S*-compactness countable S* compactness In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S*-compact L-set and a closed L-set is countably S*-compact. The continuous image of a countably S*-compact L-set is countably S*-compact. A weakly induced L-space (X, T ) is countably S*-compact if and only if (X, [T]) is countably compactinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.24 n.3 20052005-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300007en10.4067/S0716-09172005000300007 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
L-topology ßa-open cover Qa open cover S*-compactness countable S* compactness |
spellingShingle |
L-topology ßa-open cover Qa open cover S*-compactness countable S* compactness QIN YANG,GUI COUNTABLE S*-COMPACTNESS IN L-SPACES |
description |
In this paper, the notions of countable S*-compactness is introduced in L-topological spaces based on the notion of S*-compactness. An S*-compact L-set is countably S*-compact. I¦ L = [0, 1], then countable strong compactness implies countable S*-compactness and countable S*-compactness implies countable F-compactness, but each inverse is not true. The intersection of a countably S*-compact L-set and a closed L-set is countably S*-compact. The continuous image of a countably S*-compact L-set is countably S*-compact. A weakly induced L-space (X, T ) is countably S*-compact if and only if (X, [T]) is countably compact |
author |
QIN YANG,GUI |
author_facet |
QIN YANG,GUI |
author_sort |
QIN YANG,GUI |
title |
COUNTABLE S*-COMPACTNESS IN L-SPACES |
title_short |
COUNTABLE S*-COMPACTNESS IN L-SPACES |
title_full |
COUNTABLE S*-COMPACTNESS IN L-SPACES |
title_fullStr |
COUNTABLE S*-COMPACTNESS IN L-SPACES |
title_full_unstemmed |
COUNTABLE S*-COMPACTNESS IN L-SPACES |
title_sort |
countable s*-compactness in l-spaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2005 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000300007 |
work_keys_str_mv |
AT qinyanggui countablescompactnessinlspaces |
_version_ |
1718439744444039168 |