SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES

In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Coun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: GUO XU,ZHEN, GUI SHI,FU
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2006
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Countable) SPN-compactness implies (countable) N-compactness, the SPN-Lindelöf property implies the N-Lindelöf property, but each inverse is not true. Every L-set with finite support is SPN-compact. The intersection of an (a countable) SPN-compact L-set and a strongly preclosed L-set is (countably) SPNcompact. The strong preirresolute image of an (a countable) SPNcompact L-set is (countably) SPN-compact. Moreover SPN-compactness can be characterized by nets