SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES

In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Coun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: GUO XU,ZHEN, GUI SHI,FU
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2006
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172006000100004
record_format dspace
spelling oai:scielo:S0716-091720060001000042006-06-07SPN-COMPACTNESS IN L-TOPOLOGICAL SPACESGUO XU,ZHENGUI SHI,FU L-topological space strongly preopen L-set strongly preclosed L-set SPN-compactness countable SPN-compactness the SPN-Lindelöf property In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Countable) SPN-compactness implies (countable) N-compactness, the SPN-Lindelöf property implies the N-Lindelöf property, but each inverse is not true. Every L-set with finite support is SPN-compact. The intersection of an (a countable) SPN-compact L-set and a strongly preclosed L-set is (countably) SPNcompact. The strong preirresolute image of an (a countable) SPNcompact L-set is (countably) SPN-compact. Moreover SPN-compactness can be characterized by netsinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.25 n.1 20062006-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100004en10.4067/S0716-09172006000100004
institution Scielo Chile
collection Scielo Chile
language English
topic L-topological space
strongly preopen L-set
strongly preclosed L-set
SPN-compactness
countable SPN-compactness
the SPN-Lindelöf property
spellingShingle L-topological space
strongly preopen L-set
strongly preclosed L-set
SPN-compactness
countable SPN-compactness
the SPN-Lindelöf property
GUO XU,ZHEN
GUI SHI,FU
SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES
description In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Countable) SPN-compactness implies (countable) N-compactness, the SPN-Lindelöf property implies the N-Lindelöf property, but each inverse is not true. Every L-set with finite support is SPN-compact. The intersection of an (a countable) SPN-compact L-set and a strongly preclosed L-set is (countably) SPNcompact. The strong preirresolute image of an (a countable) SPNcompact L-set is (countably) SPN-compact. Moreover SPN-compactness can be characterized by nets
author GUO XU,ZHEN
GUI SHI,FU
author_facet GUO XU,ZHEN
GUI SHI,FU
author_sort GUO XU,ZHEN
title SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_short SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_full SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_fullStr SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_full_unstemmed SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES
title_sort spn-compactness in l-topological spaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2006
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100004
work_keys_str_mv AT guoxuzhen spncompactnessinltopologicalspaces
AT guishifu spncompactnessinltopologicalspaces
_version_ 1718439745346863104