SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES
In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Coun...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2006
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172006000100004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720060001000042006-06-07SPN-COMPACTNESS IN L-TOPOLOGICAL SPACESGUO XU,ZHENGUI SHI,FU L-topological space strongly preopen L-set strongly preclosed L-set SPN-compactness countable SPN-compactness the SPN-Lindelöf property In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Countable) SPN-compactness implies (countable) N-compactness, the SPN-Lindelöf property implies the N-Lindelöf property, but each inverse is not true. Every L-set with finite support is SPN-compact. The intersection of an (a countable) SPN-compact L-set and a strongly preclosed L-set is (countably) SPNcompact. The strong preirresolute image of an (a countable) SPNcompact L-set is (countably) SPN-compact. Moreover SPN-compactness can be characterized by netsinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.25 n.1 20062006-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100004en10.4067/S0716-09172006000100004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
L-topological space strongly preopen L-set strongly preclosed L-set SPN-compactness countable SPN-compactness the SPN-Lindelöf property |
spellingShingle |
L-topological space strongly preopen L-set strongly preclosed L-set SPN-compactness countable SPN-compactness the SPN-Lindelöf property GUO XU,ZHEN GUI SHI,FU SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES |
description |
In this paper, the notions of SPN-compactness, countable SPNcompactness and the SPN-Lindelöf property are introduced in L-topological spaces by means of strongly preclosed L-sets. In an L-space, an Lset having the SPN-Lindelöf property is SPN-compact if and only if it is countably SPN-compact. (Countable) SPN-compactness implies (countable) N-compactness, the SPN-Lindelöf property implies the N-Lindelöf property, but each inverse is not true. Every L-set with finite support is SPN-compact. The intersection of an (a countable) SPN-compact L-set and a strongly preclosed L-set is (countably) SPNcompact. The strong preirresolute image of an (a countable) SPNcompact L-set is (countably) SPN-compact. Moreover SPN-compactness can be characterized by nets |
author |
GUO XU,ZHEN GUI SHI,FU |
author_facet |
GUO XU,ZHEN GUI SHI,FU |
author_sort |
GUO XU,ZHEN |
title |
SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_short |
SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_full |
SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_fullStr |
SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_full_unstemmed |
SPN-COMPACTNESS IN L-TOPOLOGICAL SPACES |
title_sort |
spn-compactness in l-topological spaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2006 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100004 |
work_keys_str_mv |
AT guoxuzhen spncompactnessinltopologicalspaces AT guishifu spncompactnessinltopologicalspaces |
_version_ |
1718439745346863104 |