A SPECTRAL EXPANSION FOR SCHRÖDINGER OPERATOR

In this paper we consider the SchrÄodinger operator L generated in L² (R+) by y" + q (x) y = μy; x ’ R+ := [0;∞) subject to the boundary condition y´ (0) - hy (0) = 0, where,q is a complex valued function summable in [0;∞ and h ≠ 0 is a complex c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: BASCANBAZ-TUNCA,GULEN
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2006
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172006000100005
record_format dspace
spelling oai:scielo:S0716-091720060001000052006-06-07A SPECTRAL EXPANSION FOR SCHRÖDINGER OPERATORBASCANBAZ-TUNCA,GULEN Spectrum Weyl Function Spectral Expansion In this paper we consider the SchrÄodinger operator L generated in L² (R+) by y" + q (x) y = &#956;y; x &#8217; R+ := [0;&#8734;) subject to the boundary condition y´ (0) - hy (0) = 0, where,q is a complex valued function summable in [0;&#8734; and h &#8800; 0 is a complex constant, &#956; is a complex parameter. We have assumed that <img border=0 width=251 height=22 id="_x0000_i1026" src="http:/fbpe/img/proy/v25n1/2.jpg"> holds which is the minimal condition that the eigenvalues and the spectral singularities of the operator L are finite with finite multiplicities. Under this condition we have given the spectral expansion formula for the operator L using an integral representation for the Weyl function of L. Moreover we also have investigated the convergence of the spectral expansioninfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.25 n.1 20062006-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100005en10.4067/S0716-09172006000100005
institution Scielo Chile
collection Scielo Chile
language English
topic Spectrum
Weyl Function
Spectral Expansion
spellingShingle Spectrum
Weyl Function
Spectral Expansion
BASCANBAZ-TUNCA,GULEN
A SPECTRAL EXPANSION FOR SCHRÖDINGER OPERATOR
description In this paper we consider the SchrÄodinger operator L generated in L² (R+) by y" + q (x) y = &#956;y; x &#8217; R+ := [0;&#8734;) subject to the boundary condition y´ (0) - hy (0) = 0, where,q is a complex valued function summable in [0;&#8734; and h &#8800; 0 is a complex constant, &#956; is a complex parameter. We have assumed that <img border=0 width=251 height=22 id="_x0000_i1026" src="http:/fbpe/img/proy/v25n1/2.jpg"> holds which is the minimal condition that the eigenvalues and the spectral singularities of the operator L are finite with finite multiplicities. Under this condition we have given the spectral expansion formula for the operator L using an integral representation for the Weyl function of L. Moreover we also have investigated the convergence of the spectral expansion
author BASCANBAZ-TUNCA,GULEN
author_facet BASCANBAZ-TUNCA,GULEN
author_sort BASCANBAZ-TUNCA,GULEN
title A SPECTRAL EXPANSION FOR SCHRÖDINGER OPERATOR
title_short A SPECTRAL EXPANSION FOR SCHRÖDINGER OPERATOR
title_full A SPECTRAL EXPANSION FOR SCHRÖDINGER OPERATOR
title_fullStr A SPECTRAL EXPANSION FOR SCHRÖDINGER OPERATOR
title_full_unstemmed A SPECTRAL EXPANSION FOR SCHRÖDINGER OPERATOR
title_sort spectral expansion for schrödinger operator
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2006
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100005
work_keys_str_mv AT bascanbaztuncagulen aspectralexpansionforschrodingeroperator
AT bascanbaztuncagulen spectralexpansionforschrodingeroperator
_version_ 1718439745648852992