MORSE DECOMPOSITION, ATTRACTORS AND CHAIN RECURRENCE
The global behavior of a dynamical system can be described by its Morse decompositions or its attractor and repeller configurations. There is a close relation between these two approaches and also with (maximal) chain recurrent sets that describe the system behavior on finest Morse sets. These sets...
Guardado en:
Autores principales: | , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2006
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The global behavior of a dynamical system can be described by its Morse decompositions or its attractor and repeller configurations. There is a close relation between these two approaches and also with (maximal) chain recurrent sets that describe the system behavior on finest Morse sets. These sets depend upper semicontinuously on parameters. The connection with ergodic theory is provided through the construction of invariant measures based on chains |
---|