STRONG TOPOLOGIES FOR MULTIPLIER CONVERGENT SERIES

P. Dierolf has shown that there is a strongest locally convex polar topology which has the same subseries (bounded multiplier) convergent series as the weak topology, and I. Tweddle has shown that there is a strongest locally convex topology which has the same subseries convergent series as the weak...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: SWARTZ,CHARLES
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2006
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000200001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172006000200001
record_format dspace
spelling oai:scielo:S0716-091720060002000012006-08-24STRONG TOPOLOGIES FOR MULTIPLIER CONVERGENT SERIESSWARTZ,CHARLESP. Dierolf has shown that there is a strongest locally convex polar topology which has the same subseries (bounded multiplier) convergent series as the weak topology, and I. Tweddle has shown that there is a strongest locally convex topology which has the same subseries convergent series as the weak topology. We establish the analogues of these results for multiplier convergent series if the sequence space of multipliers has the signed weak gliding hump property. We compare our main result with other known Orlicz-Pettis Theorems for multiplier convergent series.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.25 n.2 20062006-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000200001en10.4067/S0716-09172006000200001
institution Scielo Chile
collection Scielo Chile
language English
description P. Dierolf has shown that there is a strongest locally convex polar topology which has the same subseries (bounded multiplier) convergent series as the weak topology, and I. Tweddle has shown that there is a strongest locally convex topology which has the same subseries convergent series as the weak topology. We establish the analogues of these results for multiplier convergent series if the sequence space of multipliers has the signed weak gliding hump property. We compare our main result with other known Orlicz-Pettis Theorems for multiplier convergent series.
author SWARTZ,CHARLES
spellingShingle SWARTZ,CHARLES
STRONG TOPOLOGIES FOR MULTIPLIER CONVERGENT SERIES
author_facet SWARTZ,CHARLES
author_sort SWARTZ,CHARLES
title STRONG TOPOLOGIES FOR MULTIPLIER CONVERGENT SERIES
title_short STRONG TOPOLOGIES FOR MULTIPLIER CONVERGENT SERIES
title_full STRONG TOPOLOGIES FOR MULTIPLIER CONVERGENT SERIES
title_fullStr STRONG TOPOLOGIES FOR MULTIPLIER CONVERGENT SERIES
title_full_unstemmed STRONG TOPOLOGIES FOR MULTIPLIER CONVERGENT SERIES
title_sort strong topologies for multiplier convergent series
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2006
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000200001
work_keys_str_mv AT swartzcharles strongtopologiesformultiplierconvergentseries
_version_ 1718439746272755712