DIFFEOLOGICAL SPACES
We define diffeological spaces and give some examples. The diffeological category contains the category of smooth manifolds as full subcategory. We prove that diffeological spaces and smooth maps form a cartesian closed category. The concepts of differential form and tangent functor are extended fro...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2006
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000200003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We define diffeological spaces and give some examples. The diffeological category contains the category of smooth manifolds as full subcategory. We prove that diffeological spaces and smooth maps form a cartesian closed category. The concepts of differential form and tangent functor are extended from smooth manifolds to diffeological spaces |
---|