ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES

A symmetry of a Riemann surface X is an antiholomorphic involution phi. The species of phi is the integer ek, where k is the number of connected components in the set Fix(phi) of fixed points of f and e = -1 if X \ Fix(phi) is connected and epsilon = 1 otherwise. A compact Riemann surface X of genus...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: TYSZKOWSKA,EWA
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2006
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000200004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172006000200004
record_format dspace
spelling oai:scielo:S0716-091720060002000042006-08-24ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACESTYSZKOWSKA,EWA p-hyperelliptic Riemann surface automorphisms of Riemann surface fixed points of automorphism symmetry A symmetry of a Riemann surface X is an antiholomorphic involution phi. The species of phi is the integer ek, where k is the number of connected components in the set Fix(phi) of fixed points of f and e = -1 if X \ Fix(phi) is connected and epsilon = 1 otherwise. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if it admits a conformal involution ?, called a p-hyperelliptic involution, for which X/? is an orbifold of genus p. Symmetries of p-hyperelliptic Riemann surfaces has been studied by Klein for p = 0 and by Bujalance and Costa for p > 0. Here we study the species of symmetries of so called pq-hyperelliptic surface defined as a Riemann surface which is p- and q-hyperelliptic simultaneouslyinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.25 n.2 20062006-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000200004en10.4067/S0716-09172006000200004
institution Scielo Chile
collection Scielo Chile
language English
topic p-hyperelliptic Riemann surface
automorphisms of Riemann surface
fixed points of automorphism
symmetry
spellingShingle p-hyperelliptic Riemann surface
automorphisms of Riemann surface
fixed points of automorphism
symmetry
TYSZKOWSKA,EWA
ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES
description A symmetry of a Riemann surface X is an antiholomorphic involution phi. The species of phi is the integer ek, where k is the number of connected components in the set Fix(phi) of fixed points of f and e = -1 if X \ Fix(phi) is connected and epsilon = 1 otherwise. A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if it admits a conformal involution ?, called a p-hyperelliptic involution, for which X/? is an orbifold of genus p. Symmetries of p-hyperelliptic Riemann surfaces has been studied by Klein for p = 0 and by Bujalance and Costa for p > 0. Here we study the species of symmetries of so called pq-hyperelliptic surface defined as a Riemann surface which is p- and q-hyperelliptic simultaneously
author TYSZKOWSKA,EWA
author_facet TYSZKOWSKA,EWA
author_sort TYSZKOWSKA,EWA
title ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES
title_short ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES
title_full ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES
title_fullStr ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES
title_full_unstemmed ON SYMMETRIES OF PQ-HYPERELLIPTIC RIEMANN SURFACES
title_sort on symmetries of pq-hyperelliptic riemann surfaces
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2006
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000200004
work_keys_str_mv AT tyszkowskaewa onsymmetriesofpqhyperellipticriemannsurfaces
_version_ 1718439747042410496