THE COMPLEX LINEAR REPRESENTATIONS OF GL(2, k), k A FINITE FIELD
Let k be a finite field of odd characteristic, and let G be the group of all invertible 2 ¡¿ 2 matrices over k. We construct the irreducible complex linear representations of the group G.The constructions lean on the method of induction from subgroups and on the theory of characters. To accomplish t...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2006
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000300007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172006000300007 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720060003000072007-03-21THE COMPLEX LINEAR REPRESENTATIONS OF GL(2, k), k A FINITE FIELDABURTO,LUISAJOHNSON,ROBERTOPANTOJA,JOSÉLet k be a finite field of odd characteristic, and let G be the group of all invertible 2 ¡¿ 2 matrices over k. We construct the irreducible complex linear representations of the group G.The constructions lean on the method of induction from subgroups and on the theory of characters. To accomplish this goal, the basic facts from the theory of representations and characters of finite groups are presented. Furthermore, we describe the structure of G that we need, and the theory of representations of some subgroups of G that we use. As a final result, we obtain the theory of the irreducible representations of G,by describing either the irreducible representations of , or the irreducible characters of the group Ginfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.25 n.3 20062006-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000300007en10.4067/S0716-09172006000300007 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
description |
Let k be a finite field of odd characteristic, and let G be the group of all invertible 2 ¡¿ 2 matrices over k. We construct the irreducible complex linear representations of the group G.The constructions lean on the method of induction from subgroups and on the theory of characters. To accomplish this goal, the basic facts from the theory of representations and characters of finite groups are presented. Furthermore, we describe the structure of G that we need, and the theory of representations of some subgroups of G that we use. As a final result, we obtain the theory of the irreducible representations of G,by describing either the irreducible representations of , or the irreducible characters of the group G |
author |
ABURTO,LUISA JOHNSON,ROBERTO PANTOJA,JOSÉ |
spellingShingle |
ABURTO,LUISA JOHNSON,ROBERTO PANTOJA,JOSÉ THE COMPLEX LINEAR REPRESENTATIONS OF GL(2, k), k A FINITE FIELD |
author_facet |
ABURTO,LUISA JOHNSON,ROBERTO PANTOJA,JOSÉ |
author_sort |
ABURTO,LUISA |
title |
THE COMPLEX LINEAR REPRESENTATIONS OF GL(2, k), k A FINITE FIELD |
title_short |
THE COMPLEX LINEAR REPRESENTATIONS OF GL(2, k), k A FINITE FIELD |
title_full |
THE COMPLEX LINEAR REPRESENTATIONS OF GL(2, k), k A FINITE FIELD |
title_fullStr |
THE COMPLEX LINEAR REPRESENTATIONS OF GL(2, k), k A FINITE FIELD |
title_full_unstemmed |
THE COMPLEX LINEAR REPRESENTATIONS OF GL(2, k), k A FINITE FIELD |
title_sort |
complex linear representations of gl(2, k), k a finite field |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2006 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172006000300007 |
work_keys_str_mv |
AT aburtoluisa thecomplexlinearrepresentationsofgl2kkafinitefield AT johnsonroberto thecomplexlinearrepresentationsofgl2kkafinitefield AT pantojajose thecomplexlinearrepresentationsofgl2kkafinitefield AT aburtoluisa complexlinearrepresentationsofgl2kkafinitefield AT johnsonroberto complexlinearrepresentationsofgl2kkafinitefield AT pantojajose complexlinearrepresentationsofgl2kkafinitefield |
_version_ |
1718439749943820288 |