UNIFORM CONVERGENCE OF MULTIPLIER CONVERGENT SERIES

If &#955; is a sequence K-space and &#931; x j is a series in a topological vector space X; the series is said to be &#955;-multiplier convergent if the series <img border=0 width=75 height=24 id="_x0000_i1026" src="http:/fbpe/img/proy/v26n1/sumatoria.JPG">conve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: SWARTZ,CHARLES
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2007
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000100002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:If &#955; is a sequence K-space and &#931; x j is a series in a topological vector space X; the series is said to be &#955;-multiplier convergent if the series <img border=0 width=75 height=24 id="_x0000_i1026" src="http:/fbpe/img/proy/v26n1/sumatoria.JPG">converges in X for every t = {tj} <img border=0 width=15 height=15 id="_x0000_i1027" src="http:/fbpe/img/proy/v26n1/pertenece.JPG">&#955;. We show that if &#955; satisfies a gliding hump condition, called the signed strong gliding hump condition, then the series <img border=0 width=75 height=24 id="_x0000_i1028" src="http:/fbpe/img/proy/v26n1/sumatoria.JPG">converge uniformly for t = {tj} belonging to bounded subsets of &#955;. A similar uniform convergence result is established for a multiplier convergent series version of the Hahn-Schur Theorem.