EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES
In this paper, we prove the existence of solutions for some strongly nonlinear Dirichlet problems whose model is the following. <img border=0 width=446 height=38 id="_x0000_i1028" src="../img/exist.JPG"> Where Ω is an open bounded subset of IR N , N = 2. We emphasi...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2007
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000200002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172007000200002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720070002000022007-11-16EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACESYOUSSFI,A Periodic solutions logarithmic In this paper, we prove the existence of solutions for some strongly nonlinear Dirichlet problems whose model is the following. <img border=0 width=446 height=38 id="_x0000_i1028" src="../img/exist.JPG"> Where Ω is an open bounded subset of IR N , N = 2. We emphasize that no Δ2-condition is required for the N-function M.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.26 n.2 20072007-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000200002en10.4067/S0716-09172007000200002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Periodic solutions logarithmic |
spellingShingle |
Periodic solutions logarithmic YOUSSFI,A EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES |
description |
In this paper, we prove the existence of solutions for some strongly nonlinear Dirichlet problems whose model is the following. <img border=0 width=446 height=38 id="_x0000_i1028" src="../img/exist.JPG"> Where Ω is an open bounded subset of IR N , N = 2. We emphasize that no Δ2-condition is required for the N-function M. |
author |
YOUSSFI,A |
author_facet |
YOUSSFI,A |
author_sort |
YOUSSFI,A |
title |
EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES |
title_short |
EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES |
title_full |
EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES |
title_fullStr |
EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES |
title_full_unstemmed |
EXISTENCE RESULT FOR STRONGLY NONLINEAR ELLIPTIC EQUATIONS IN ORLICZ-SOBOLEV SPACES |
title_sort |
existence result for strongly nonlinear elliptic equations in orlicz-sobolev spaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2007 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000200002 |
work_keys_str_mv |
AT youssfia existenceresultforstronglynonlinearellipticequationsinorliczsobolevspaces |
_version_ |
1718439752165752832 |