QUASI - MACKEY TOPOLOGY

Let E1, E2 be Hausdorff locally convex spaces with E2 quasi-complete, and T : E1 → E2 a continuous linear map. Then T maps bounded sets of E1 into relatively weakly compact subsets of E2 if and only if T is continuous with quasi-Mackey topology on E1. If E1 has quasi-Mackey topology and E2...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: SINGH KHURANA,SURJIT
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2007
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172007000300003
record_format dspace
spelling oai:scielo:S0716-091720070003000032008-01-28QUASI - MACKEY TOPOLOGYSINGH KHURANA,SURJIT quasi - Mackey topology weakly unconditionally Cauchy unconditionally converging operators. Let E1, E2 be Hausdorff locally convex spaces with E2 quasi-complete, and T : E1 → E2 a continuous linear map. Then T maps bounded sets of E1 into relatively weakly compact subsets of E2 if and only if T is continuous with quasi-Mackey topology on E1. If E1 has quasi-Mackey topology and E2 is quasi-complete, then a sequentially continuos linear map T : E1 → E2 is an unconditionally converging operator.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.26 n.3 20072007-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300003en10.4067/S0716-09172007000300003
institution Scielo Chile
collection Scielo Chile
language English
topic quasi - Mackey topology
weakly unconditionally Cauchy
unconditionally converging operators.
spellingShingle quasi - Mackey topology
weakly unconditionally Cauchy
unconditionally converging operators.
SINGH KHURANA,SURJIT
QUASI - MACKEY TOPOLOGY
description Let E1, E2 be Hausdorff locally convex spaces with E2 quasi-complete, and T : E1 → E2 a continuous linear map. Then T maps bounded sets of E1 into relatively weakly compact subsets of E2 if and only if T is continuous with quasi-Mackey topology on E1. If E1 has quasi-Mackey topology and E2 is quasi-complete, then a sequentially continuos linear map T : E1 → E2 is an unconditionally converging operator.
author SINGH KHURANA,SURJIT
author_facet SINGH KHURANA,SURJIT
author_sort SINGH KHURANA,SURJIT
title QUASI - MACKEY TOPOLOGY
title_short QUASI - MACKEY TOPOLOGY
title_full QUASI - MACKEY TOPOLOGY
title_fullStr QUASI - MACKEY TOPOLOGY
title_full_unstemmed QUASI - MACKEY TOPOLOGY
title_sort quasi - mackey topology
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2007
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300003
work_keys_str_mv AT singhkhuranasurjit quasimackeytopology
_version_ 1718439754210476032