QUASI - MACKEY TOPOLOGY
Let E1, E2 be Hausdorff locally convex spaces with E2 quasi-complete, and T : E1 → E2 a continuous linear map. Then T maps bounded sets of E1 into relatively weakly compact subsets of E2 if and only if T is continuous with quasi-Mackey topology on E1. If E1 has quasi-Mackey topology and E2...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2007
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172007000300003 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720070003000032008-01-28QUASI - MACKEY TOPOLOGYSINGH KHURANA,SURJIT quasi - Mackey topology weakly unconditionally Cauchy unconditionally converging operators. Let E1, E2 be Hausdorff locally convex spaces with E2 quasi-complete, and T : E1 → E2 a continuous linear map. Then T maps bounded sets of E1 into relatively weakly compact subsets of E2 if and only if T is continuous with quasi-Mackey topology on E1. If E1 has quasi-Mackey topology and E2 is quasi-complete, then a sequentially continuos linear map T : E1 → E2 is an unconditionally converging operator.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.26 n.3 20072007-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300003en10.4067/S0716-09172007000300003 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
quasi - Mackey topology weakly unconditionally Cauchy unconditionally converging operators. |
spellingShingle |
quasi - Mackey topology weakly unconditionally Cauchy unconditionally converging operators. SINGH KHURANA,SURJIT QUASI - MACKEY TOPOLOGY |
description |
Let E1, E2 be Hausdorff locally convex spaces with E2 quasi-complete, and T : E1 → E2 a continuous linear map. Then T maps bounded sets of E1 into relatively weakly compact subsets of E2 if and only if T is continuous with quasi-Mackey topology on E1. If E1 has quasi-Mackey topology and E2 is quasi-complete, then a sequentially continuos linear map T : E1 → E2 is an unconditionally converging operator. |
author |
SINGH KHURANA,SURJIT |
author_facet |
SINGH KHURANA,SURJIT |
author_sort |
SINGH KHURANA,SURJIT |
title |
QUASI - MACKEY TOPOLOGY |
title_short |
QUASI - MACKEY TOPOLOGY |
title_full |
QUASI - MACKEY TOPOLOGY |
title_fullStr |
QUASI - MACKEY TOPOLOGY |
title_full_unstemmed |
QUASI - MACKEY TOPOLOGY |
title_sort |
quasi - mackey topology |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2007 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300003 |
work_keys_str_mv |
AT singhkhuranasurjit quasimackeytopology |
_version_ |
1718439754210476032 |