REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS
For a wide variety of Banach algebras A (containing the group algebras L¹(G), M (G) and A(G)) the Arens regularity of A** is equivalent to that A, and the amenability of A** is equivalent to the amenability and regularity of A. In this paper, among other things, we show that this variety contains th...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2007
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172007000300004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720070003000042008-01-28REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRASREJALI,A.VISHKI,H. R. E. Arens product Weighted group algebra Amenability For a wide variety of Banach algebras A (containing the group algebras L¹(G), M (G) and A(G)) the Arens regularity of A** is equivalent to that A, and the amenability of A** is equivalent to the amenability and regularity of A. In this paper, among other things, we show that this variety contains the weighted group algebras L¹(G, w) and M(G, w).info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.26 n.3 20072007-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300004en10.4067/S0716-09172007000300004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Arens product Weighted group algebra Amenability |
spellingShingle |
Arens product Weighted group algebra Amenability REJALI,A. VISHKI,H. R. E. REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS |
description |
For a wide variety of Banach algebras A (containing the group algebras L¹(G), M (G) and A(G)) the Arens regularity of A** is equivalent to that A, and the amenability of A** is equivalent to the amenability and regularity of A. In this paper, among other things, we show that this variety contains the weighted group algebras L¹(G, w) and M(G, w). |
author |
REJALI,A. VISHKI,H. R. E. |
author_facet |
REJALI,A. VISHKI,H. R. E. |
author_sort |
REJALI,A. |
title |
REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS |
title_short |
REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS |
title_full |
REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS |
title_fullStr |
REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS |
title_full_unstemmed |
REGULARITY AND AMENABILITY OF THE SECOND DUAL OF WEIGHTED GROUP ALGEBRAS |
title_sort |
regularity and amenability of the second dual of weighted group algebras |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2007 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300004 |
work_keys_str_mv |
AT rejalia regularityandamenabilityoftheseconddualofweightedgroupalgebras AT vishkihre regularityandamenabilityoftheseconddualofweightedgroupalgebras |
_version_ |
1718439754537631744 |