THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS

Mixed linear models, also known as two-level hierarchical models, are commonly used in many applications. In this paper, we consider the marginal distribution that arises within a Bayesian framework, when the components of variance are integrated out of the joint posterior distribution. We provide a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: CARRIQUIRY,ALICIA L, KLIEMANN,WOLFGANG
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2007
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172007000300006
record_format dspace
spelling oai:scielo:S0716-091720070003000062008-01-28THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELSCARRIQUIRY,ALICIA LKLIEMANN,WOLFGANG Posterior modes mixed linear models poly-t distributions Mixed linear models, also known as two-level hierarchical models, are commonly used in many applications. In this paper, we consider the marginal distribution that arises within a Bayesian framework, when the components of variance are integrated out of the joint posterior distribution. We provide analytical tools for describing the surface of the distribution of interest. The main theorem and its proof show how to determine the number of local maxima, and their approximate location and relative size. This information can be used by practitioners to assess the performance of Laplace-type integral approximations, to compute possibly disconnected highest posterior density regions, and to custom-design numerical algorithms.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.26 n.3 20072007-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300006en10.4067/S0716-09172007000300006
institution Scielo Chile
collection Scielo Chile
language English
topic Posterior modes
mixed linear models
poly-t distributions
spellingShingle Posterior modes
mixed linear models
poly-t distributions
CARRIQUIRY,ALICIA L
KLIEMANN,WOLFGANG
THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS
description Mixed linear models, also known as two-level hierarchical models, are commonly used in many applications. In this paper, we consider the marginal distribution that arises within a Bayesian framework, when the components of variance are integrated out of the joint posterior distribution. We provide analytical tools for describing the surface of the distribution of interest. The main theorem and its proof show how to determine the number of local maxima, and their approximate location and relative size. This information can be used by practitioners to assess the performance of Laplace-type integral approximations, to compute possibly disconnected highest posterior density regions, and to custom-design numerical algorithms.
author CARRIQUIRY,ALICIA L
KLIEMANN,WOLFGANG
author_facet CARRIQUIRY,ALICIA L
KLIEMANN,WOLFGANG
author_sort CARRIQUIRY,ALICIA L
title THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS
title_short THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS
title_full THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS
title_fullStr THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS
title_full_unstemmed THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS
title_sort modes of posterior distributions for mixed linear models
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2007
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172007000300006
work_keys_str_mv AT carriquiryalicial themodesofposteriordistributionsformixedlinearmodels
AT kliemannwolfgang themodesofposteriordistributionsformixedlinearmodels
AT carriquiryalicial modesofposteriordistributionsformixedlinearmodels
AT kliemannwolfgang modesofposteriordistributionsformixedlinearmodels
_version_ 1718439755065065472