ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION

We provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: ARGYROS,IOANNIS K, HILOUT,SAÏD
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2008
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000100001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172008000100001
record_format dspace
spelling oai:scielo:S0716-091720080001000012008-05-22ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITIONARGYROS,IOANNIS KHILOUT,SAÏD Banach space Newton-type method convergence gamma-type condition local convergence Fréchet-derivative radius of convergence We provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use information only at a point and a gamma-type condition [4], [10]. It turns out that our radius of convergence is larger, and more general than the corresponding one in [10]. Moreover the same can hold true when our radius is compared with the ones given in [9] and [11]. A numerical example is also providedinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.27 n.1 20082008-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000100001en10.4067/S0716-09172008000100001
institution Scielo Chile
collection Scielo Chile
language English
topic Banach space
Newton-type method
convergence
gamma-type condition
local convergence
Fréchet-derivative
radius of convergence
spellingShingle Banach space
Newton-type method
convergence
gamma-type condition
local convergence
Fréchet-derivative
radius of convergence
ARGYROS,IOANNIS K
HILOUT,SAÏD
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
description We provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use information only at a point and a gamma-type condition [4], [10]. It turns out that our radius of convergence is larger, and more general than the corresponding one in [10]. Moreover the same can hold true when our radius is compared with the ones given in [9] and [11]. A numerical example is also provided
author ARGYROS,IOANNIS K
HILOUT,SAÏD
author_facet ARGYROS,IOANNIS K
HILOUT,SAÏD
author_sort ARGYROS,IOANNIS K
title ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
title_short ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
title_full ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
title_fullStr ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
title_full_unstemmed ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
title_sort on the local convergence of a newton-type method in banach spaces under a gamma-type condition
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2008
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000100001
work_keys_str_mv AT argyrosioannisk onthelocalconvergenceofanewtontypemethodinbanachspacesunderagammatypecondition
AT hiloutsaid onthelocalconvergenceofanewtontypemethodinbanachspacesunderagammatypecondition
_version_ 1718439755811651584