ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION
We provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use in...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2008
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000100001 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172008000100001 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720080001000012008-05-22ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITIONARGYROS,IOANNIS KHILOUT,SAÏD Banach space Newton-type method convergence gamma-type condition local convergence Fréchet-derivative radius of convergence We provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use information only at a point and a gamma-type condition [4], [10]. It turns out that our radius of convergence is larger, and more general than the corresponding one in [10]. Moreover the same can hold true when our radius is compared with the ones given in [9] and [11]. A numerical example is also providedinfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.27 n.1 20082008-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000100001en10.4067/S0716-09172008000100001 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Banach space Newton-type method convergence gamma-type condition local convergence Fréchet-derivative radius of convergence |
spellingShingle |
Banach space Newton-type method convergence gamma-type condition local convergence Fréchet-derivative radius of convergence ARGYROS,IOANNIS K HILOUT,SAÏD ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION |
description |
We provide a local convergence analysis for a Newton-type method to approximate a locally unique solution of an operator equation in Banach spaces. The local convergence of this method was studied in the elegant work by Werner in [11], using information on the domain of the operator. Here, we use information only at a point and a gamma-type condition [4], [10]. It turns out that our radius of convergence is larger, and more general than the corresponding one in [10]. Moreover the same can hold true when our radius is compared with the ones given in [9] and [11]. A numerical example is also provided |
author |
ARGYROS,IOANNIS K HILOUT,SAÏD |
author_facet |
ARGYROS,IOANNIS K HILOUT,SAÏD |
author_sort |
ARGYROS,IOANNIS K |
title |
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION |
title_short |
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION |
title_full |
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION |
title_fullStr |
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION |
title_full_unstemmed |
ON THE LOCAL CONVERGENCE OF A NEWTON-TYPE METHOD IN BANACH SPACES UNDER A GAMMA-TYPE CONDITION |
title_sort |
on the local convergence of a newton-type method in banach spaces under a gamma-type condition |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2008 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000100001 |
work_keys_str_mv |
AT argyrosioannisk onthelocalconvergenceofanewtontypemethodinbanachspacesunderagammatypecondition AT hiloutsaid onthelocalconvergenceofanewtontypemethodinbanachspacesunderagammatypecondition |
_version_ |
1718439755811651584 |