NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIES

This paper concerns the study of the numerical approximation a semilinear parabolic equation subject to Neumann boundary conditions and positive initial data. We find some conditions under which the solution of a semidiscrete form of the above problem quenches in a fi- nite time and estimate its sem...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: BONI,THÉODORE K, KOUAKOU,THIBAUT K
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2008
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172008000300004
record_format dspace
spelling oai:scielo:S0716-091720080003000042009-01-13NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIESBONI,THÉODORE KKOUAKOU,THIBAUT K Semidiscretizations semilinear parabolic equation quenching numerical quenching time convergence This paper concerns the study of the numerical approximation a semilinear parabolic equation subject to Neumann boundary conditions and positive initial data. We find some conditions under which the solution of a semidiscrete form of the above problem quenches in a fi- nite time and estimate its semidiscrete quenching time. We also prove that the semidiscrete quenching time converges to the real one when the mesh size goes to zero. A similar study has been also investigated taking a discrete form of the above problem. Finally, we give some numerical experiments to illustrate our analysis.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.27 n.3 20082008-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300004en10.4067/S0716-09172008000300004
institution Scielo Chile
collection Scielo Chile
language English
topic Semidiscretizations
semilinear parabolic equation
quenching
numerical quenching time
convergence
spellingShingle Semidiscretizations
semilinear parabolic equation
quenching
numerical quenching time
convergence
BONI,THÉODORE K
KOUAKOU,THIBAUT K
NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIES
description This paper concerns the study of the numerical approximation a semilinear parabolic equation subject to Neumann boundary conditions and positive initial data. We find some conditions under which the solution of a semidiscrete form of the above problem quenches in a fi- nite time and estimate its semidiscrete quenching time. We also prove that the semidiscrete quenching time converges to the real one when the mesh size goes to zero. A similar study has been also investigated taking a discrete form of the above problem. Finally, we give some numerical experiments to illustrate our analysis.
author BONI,THÉODORE K
KOUAKOU,THIBAUT K
author_facet BONI,THÉODORE K
KOUAKOU,THIBAUT K
author_sort BONI,THÉODORE K
title NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIES
title_short NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIES
title_full NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIES
title_fullStr NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIES
title_full_unstemmed NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION WITH A POTENTIAL AND GENERAL NONLINEARITIES
title_sort numerical quenching for a semilinear parabolic equation with a potential and general nonlinearities
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2008
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300004
work_keys_str_mv AT bonitheodorek numericalquenchingforasemilinearparabolicequationwithapotentialandgeneralnonlinearities
AT kouakouthibautk numericalquenchingforasemilinearparabolicequationwithapotentialandgeneralnonlinearities
_version_ 1718439759915778048