ABOUT AN EXISTENCE THEOREM OF THE HENSTOCK - FOURIER TRANSFORM

We show that if f is lying on the intersection of the space of Henstock-Kurzweil integrable functions and the space of the bounded variation functions in the neighborhood of ±8, then its Fourier Transform exists in all R. This result is more general than the classical result which enunciates that if...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: MENDOZA TORRES,FRANCISCO JAVIER, ESCAMILLA REYNA,JUAN ALBERTO, RAGGI CÁRDENAS,MA. GUADALUPE
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2008
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We show that if f is lying on the intersection of the space of Henstock-Kurzweil integrable functions and the space of the bounded variation functions in the neighborhood of ±8, then its Fourier Transform exists in all R. This result is more general than the classical result which enunciates that if f is Lebesgue integrable, then the Fourier Transform of f exists in all R, because we also have proved that there are functions which belong to the intersection of the space of the Henstock-Kurzweil integrable functions and the space of the bounded variation functions which are not Lebesgue integrable.