ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS
We use a two-step Steffensen-type method [1], [2], [4], [6], [13]-[16] to solve a generalized equation in a Banach space setting under Hölder-type conditions introduced by us in [2], [6] for nonlinear equations. Using some ideas given in [4], [6] for nonlinear equations, we provide a local convergen...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2008
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300007 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172008000300007 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720080003000072009-01-13ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONSARGYROS,IOANNIS KHILOUT,SAÏD Banach space Steffensens method generalized equation Aubin continuity Hölder continuity radius of convergence divided difference set- valued map We use a two-step Steffensen-type method [1], [2], [4], [6], [13]-[16] to solve a generalized equation in a Banach space setting under Hölder-type conditions introduced by us in [2], [6] for nonlinear equations. Using some ideas given in [4], [6] for nonlinear equations, we provide a local convergence analysis with the following advantages over related [13]-[16]: finer error bounds on the distances involved, and a larger radius of convergence. An application is also provided.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.27 n.3 20082008-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300007en10.4067/S0716-09172008000300007 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Banach space Steffensens method generalized equation Aubin continuity Hölder continuity radius of convergence divided difference set- valued map |
spellingShingle |
Banach space Steffensens method generalized equation Aubin continuity Hölder continuity radius of convergence divided difference set- valued map ARGYROS,IOANNIS K HILOUT,SAÏD ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS |
description |
We use a two-step Steffensen-type method [1], [2], [4], [6], [13]-[16] to solve a generalized equation in a Banach space setting under Hölder-type conditions introduced by us in [2], [6] for nonlinear equations. Using some ideas given in [4], [6] for nonlinear equations, we provide a local convergence analysis with the following advantages over related [13]-[16]: finer error bounds on the distances involved, and a larger radius of convergence. An application is also provided. |
author |
ARGYROS,IOANNIS K HILOUT,SAÏD |
author_facet |
ARGYROS,IOANNIS K HILOUT,SAÏD |
author_sort |
ARGYROS,IOANNIS K |
title |
ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS |
title_short |
ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS |
title_full |
ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS |
title_fullStr |
ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS |
title_full_unstemmed |
ON THE LOCAL CONVERGENCE OF A TWO-STEP STEFFENSEN-TYPE METHOD FOR SOLVING GENERALIZED EQUATIONS |
title_sort |
on the local convergence of a two-step steffensen-type method for solving generalized equations |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2008 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000300007 |
work_keys_str_mv |
AT argyrosioannisk onthelocalconvergenceofatwostepsteffensentypemethodforsolvinggeneralizedequations AT hiloutsaid onthelocalconvergenceofatwostepsteffensentypemethodforsolvinggeneralizedequations |
_version_ |
1718439760624615424 |