SCHUR RING AND QUASI-SIMPLE MODULES
Let R be a ring of algebraic integers of an algebraic number field F and let G ≤ GLn(R) be a finite group. In this paper we show that the R-span of G is just the matrix ring Mn(R) of the n X n-matrices over R if and only if G/Opi(G) is absolutely simple for all p i ∈ π,...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2009
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172009000200003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let R be a ring of algebraic integers of an algebraic number field F and let G ≤ GLn(R) be a finite group. In this paper we show that the R-span of G is just the matrix ring Mn(R) of the n X n-matrices over R if and only if G/Opi(G) is absolutely simple for all p i ∈ π, where π is the set of the positive prime divisors of |G| and Opi(G) is the largest normal pi-subgroup. |
---|