JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS
Let A be an algebra. A sequence {d n} of linear mappings on A is called a higher derivation if <img border=0 width=178 height=21 src="http:/fbpe/img/proy/v29n2/img01.JPG" alt="http:/fbpe/img/proy/v29n2/img01.JPG">for each a, b ? A and each nonnegative integer n. Jewell [Pac...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let A be an algebra. A sequence {d n} of linear mappings on A is called a higher derivation if <img border=0 width=178 height=21 src="http:/fbpe/img/proy/v29n2/img01.JPG" alt="http:/fbpe/img/proy/v29n2/img01.JPG">for each a, b ? A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ? ker(d m), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {d n} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A. |
---|