JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS

Let A be an algebra. A sequence {d n} of linear mappings on A is called a higher derivation if <img border=0 width=178 height=21 src="http:/fbpe/img/proy/v29n2/img01.JPG" alt="http:/fbpe/img/proy/v29n2/img01.JPG">for each a, b ? A and each nonnegative integer n. Jewell [Pac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hejazian,Shirin, Mirzavaziri,Madjid, Omidvar Tehrani,Elahe
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172010000200003
record_format dspace
spelling oai:scielo:S0716-091720100002000032014-08-14JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRASHejazian,ShirinMirzavaziri,MadjidOmidvar Tehrani,Elahe Derivation higher derivation automatic continuity Sakai theorem Let A be an algebra. A sequence {d n} of linear mappings on A is called a higher derivation if <img border=0 width=178 height=21 src="http:/fbpe/img/proy/v29n2/img01.JPG" alt="http:/fbpe/img/proy/v29n2/img01.JPG">for each a, b ? A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ? ker(d m), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {d n} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.29 n.2 20102010-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200003en10.4067/S0716-09172010000200003
institution Scielo Chile
collection Scielo Chile
language English
topic Derivation
higher derivation
automatic continuity
Sakai theorem
spellingShingle Derivation
higher derivation
automatic continuity
Sakai theorem
Hejazian,Shirin
Mirzavaziri,Madjid
Omidvar Tehrani,Elahe
JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS
description Let A be an algebra. A sequence {d n} of linear mappings on A is called a higher derivation if <img border=0 width=178 height=21 src="http:/fbpe/img/proy/v29n2/img01.JPG" alt="http:/fbpe/img/proy/v29n2/img01.JPG">for each a, b ? A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ? ker(d m), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {d n} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A.
author Hejazian,Shirin
Mirzavaziri,Madjid
Omidvar Tehrani,Elahe
author_facet Hejazian,Shirin
Mirzavaziri,Madjid
Omidvar Tehrani,Elahe
author_sort Hejazian,Shirin
title JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS
title_short JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS
title_full JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS
title_fullStr JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS
title_full_unstemmed JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS
title_sort jewell theorem for higher derivations on c*-algebras
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200003
work_keys_str_mv AT hejazianshirin jewelltheoremforhigherderivationsoncalgebras
AT mirzavazirimadjid jewelltheoremforhigherderivationsoncalgebras
AT omidvartehranielahe jewelltheoremforhigherderivationsoncalgebras
_version_ 1718439768907317248