JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS
Let A be an algebra. A sequence {d n} of linear mappings on A is called a higher derivation if <img border=0 width=178 height=21 src="http:/fbpe/img/proy/v29n2/img01.JPG" alt="http:/fbpe/img/proy/v29n2/img01.JPG">for each a, b ? A and each nonnegative integer n. Jewell [Pac...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172010000200003 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720100002000032014-08-14JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRASHejazian,ShirinMirzavaziri,MadjidOmidvar Tehrani,Elahe Derivation higher derivation automatic continuity Sakai theorem Let A be an algebra. A sequence {d n} of linear mappings on A is called a higher derivation if <img border=0 width=178 height=21 src="http:/fbpe/img/proy/v29n2/img01.JPG" alt="http:/fbpe/img/proy/v29n2/img01.JPG">for each a, b ? A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ? ker(d m), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {d n} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.29 n.2 20102010-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200003en10.4067/S0716-09172010000200003 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Derivation higher derivation automatic continuity Sakai theorem |
spellingShingle |
Derivation higher derivation automatic continuity Sakai theorem Hejazian,Shirin Mirzavaziri,Madjid Omidvar Tehrani,Elahe JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS |
description |
Let A be an algebra. A sequence {d n} of linear mappings on A is called a higher derivation if <img border=0 width=178 height=21 src="http:/fbpe/img/proy/v29n2/img01.JPG" alt="http:/fbpe/img/proy/v29n2/img01.JPG">for each a, b ? A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ? ker(d m), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {d n} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A. |
author |
Hejazian,Shirin Mirzavaziri,Madjid Omidvar Tehrani,Elahe |
author_facet |
Hejazian,Shirin Mirzavaziri,Madjid Omidvar Tehrani,Elahe |
author_sort |
Hejazian,Shirin |
title |
JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS |
title_short |
JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS |
title_full |
JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS |
title_fullStr |
JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS |
title_full_unstemmed |
JEWELL THEOREM FOR HIGHER DERIVATIONS ON C*-ALGEBRAS |
title_sort |
jewell theorem for higher derivations on c*-algebras |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2010 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200003 |
work_keys_str_mv |
AT hejazianshirin jewelltheoremforhigherderivationsoncalgebras AT mirzavazirimadjid jewelltheoremforhigherderivationsoncalgebras AT omidvartehranielahe jewelltheoremforhigherderivationsoncalgebras |
_version_ |
1718439768907317248 |