INVERSE SPREAD LIMIT OF A NONNEGATIVE MATRIX

For a given nonnegative n × n matrix A consider the following quantity <img border=0 width=228 height=30 src="http:/fbpe/img/proy/v29n2/img02.JPG" alt="http:/fbpe/img/proy/v29n2/img02.JPG">as long as the denominator is positive. It is simply the ratio between the smallest a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Abueida,Atif, Nielsen,Mark, Yau Tamv,Tin
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2010
Materias:
DNA
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200004
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:For a given nonnegative n × n matrix A consider the following quantity <img border=0 width=228 height=30 src="http:/fbpe/img/proy/v29n2/img02.JPG" alt="http:/fbpe/img/proy/v29n2/img02.JPG">as long as the denominator is positive. It is simply the ratio between the smallest and the largest entries of Am. We call s(Am) the inverse spread of Am which is interpreted as a measure of the maximum variation among the entries of Am in the multiplicative and reciprocal sense. Smaller s(Am) means a larger variation for Am. Clearly 0 = s(Am) = 1 for all m = 1, 2, . . . We study the asymptotic behavior of s(Am), that is, the behavior of s(Am) as m ? 8. The study arises from evolutionary biology.