INVERSE SPREAD LIMIT OF A NONNEGATIVE MATRIX
For a given nonnegative n × n matrix A consider the following quantity <img border=0 width=228 height=30 src="http:/fbpe/img/proy/v29n2/img02.JPG" alt="http:/fbpe/img/proy/v29n2/img02.JPG">as long as the denominator is positive. It is simply the ratio between the smallest a...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | For a given nonnegative n × n matrix A consider the following quantity <img border=0 width=228 height=30 src="http:/fbpe/img/proy/v29n2/img02.JPG" alt="http:/fbpe/img/proy/v29n2/img02.JPG">as long as the denominator is positive. It is simply the ratio between the smallest and the largest entries of Am. We call s(Am) the inverse spread of Am which is interpreted as a measure of the maximum variation among the entries of Am in the multiplicative and reciprocal sense. Smaller s(Am) means a larger variation for Am. Clearly 0 = s(Am) = 1 for all m = 1, 2, . . . We study the asymptotic behavior of s(Am), that is, the behavior of s(Am) as m ? 8. The study arises from evolutionary biology. |
---|