EXTREMALS OF A QUADRATIC COST OPTIMAL PROBLEM ON THE REAL PROJECTIVE LINE

Let S be a bilinear control system on R² whose matrices generate the Lie algebra sl(2) of the Lie group Sl(2) : the group of order two real matrices with determinant 1. In this work we focus on the extremals of a quadratic cost optimal problem for the angle system PSdefined by the projection of S on...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ayala,V, Rodríguez,J. C, San Martín,L. A. B
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200007
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172010000200007
record_format dspace
spelling oai:scielo:S0716-091720100002000072014-08-14EXTREMALS OF A QUADRATIC COST OPTIMAL PROBLEM ON THE REAL PROJECTIVE LINEAyala,VRodríguez,J. CSan Martín,L. A. B optimal control problem extremals Pontryagin maximum principle bilinear control systems angle system Cartan-Killing form real projective line special linear Lie group Let S be a bilinear control system on R² whose matrices generate the Lie algebra sl(2) of the Lie group Sl(2) : the group of order two real matrices with determinant 1. In this work we focus on the extremals of a quadratic cost optimal problem for the angle system PSdefined by the projection of S onto the real projective line P¹. It has been proved in [2] that through the Cartan-Killing form the cotangent bundle of P¹ can be identified with a cone C in sl(2). Via the Pontryagin Maximum Principle, we explicitly show the extremals by using the mentioned identification and the special form of the trajectories associated with the lifting of vector fields on PS. We analyze both: the controllable case and when the system bf P S give rise to control sets. Some examples are shown.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.29 n.2 20102010-08-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200007en10.4067/S0716-09172010000200007
institution Scielo Chile
collection Scielo Chile
language English
topic optimal control problem
extremals
Pontryagin maximum principle
bilinear control systems
angle system
Cartan-Killing form
real projective line
special linear Lie group
spellingShingle optimal control problem
extremals
Pontryagin maximum principle
bilinear control systems
angle system
Cartan-Killing form
real projective line
special linear Lie group
Ayala,V
Rodríguez,J. C
San Martín,L. A. B
EXTREMALS OF A QUADRATIC COST OPTIMAL PROBLEM ON THE REAL PROJECTIVE LINE
description Let S be a bilinear control system on R² whose matrices generate the Lie algebra sl(2) of the Lie group Sl(2) : the group of order two real matrices with determinant 1. In this work we focus on the extremals of a quadratic cost optimal problem for the angle system PSdefined by the projection of S onto the real projective line P¹. It has been proved in [2] that through the Cartan-Killing form the cotangent bundle of P¹ can be identified with a cone C in sl(2). Via the Pontryagin Maximum Principle, we explicitly show the extremals by using the mentioned identification and the special form of the trajectories associated with the lifting of vector fields on PS. We analyze both: the controllable case and when the system bf P S give rise to control sets. Some examples are shown.
author Ayala,V
Rodríguez,J. C
San Martín,L. A. B
author_facet Ayala,V
Rodríguez,J. C
San Martín,L. A. B
author_sort Ayala,V
title EXTREMALS OF A QUADRATIC COST OPTIMAL PROBLEM ON THE REAL PROJECTIVE LINE
title_short EXTREMALS OF A QUADRATIC COST OPTIMAL PROBLEM ON THE REAL PROJECTIVE LINE
title_full EXTREMALS OF A QUADRATIC COST OPTIMAL PROBLEM ON THE REAL PROJECTIVE LINE
title_fullStr EXTREMALS OF A QUADRATIC COST OPTIMAL PROBLEM ON THE REAL PROJECTIVE LINE
title_full_unstemmed EXTREMALS OF A QUADRATIC COST OPTIMAL PROBLEM ON THE REAL PROJECTIVE LINE
title_sort extremals of a quadratic cost optimal problem on the real projective line
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000200007
work_keys_str_mv AT ayalav extremalsofaquadraticcostoptimalproblemontherealprojectiveline
AT rodriguezjc extremalsofaquadraticcostoptimalproblemontherealprojectiveline
AT sanmartinlab extremalsofaquadraticcostoptimalproblemontherealprojectiveline
_version_ 1718439770033487872