GENERALIZED ULAM-HYERS STABILITIES OF QUARTIC DERIVATIONS ON BANACH ALGEBRAS
Let A , B be two rings. A mapping δ : A → B is called quartic derivation, if δ is a quartic function satisfies δ(ab) = a4δ(b) + δ(a)b4 for all a, b ∈ A. The main purpose of this paper to prove the generalized Hyers-Ulam-Rassias stabili...
Enregistré dans:
Auteurs principaux: | Eshaghi Gordji,M, Ghobadipour,N |
---|---|
Langue: | English |
Publié: |
Universidad Católica del Norte, Departamento de Matemáticas
2010
|
Sujets: | |
Accès en ligne: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000300005 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Stability Analysis of A-Quartic Functional Equation
par: Chinnaappu Muthamilarasi, et autres
Publié: (2021) -
Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation via Laplace Transform
par: Daniela Marian
Publié: (2021) -
New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations
par: Alberto M. Simões, et autres
Publié: (2021) -
Hyers-Ulam stability of an additive-quadratic functional equation
par: Govindan,Vediyappan, et autres
Publié: (2020) -
Generalized Ulam-Hyers-Rassias stability of a Cauchy type functional equation
par: Akkouchi,Mohamed
Publié: (2013)