A note on the jordan decomposition

The multiplicative Jordan decomposition of a linear isomorphism of Rn into its elliptic, hyperbolic and unipotent components is well know. One can define an abstract Jordan decomposition of an element of a Lie group by taking the Jordan decomposition of its adjoint map. For real algebraic Lie groups...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Patrão,Mauro, Santos,Laércio, Seco,Lucas
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2011
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000100011
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The multiplicative Jordan decomposition of a linear isomorphism of Rn into its elliptic, hyperbolic and unipotent components is well know. One can define an abstract Jordan decomposition of an element of a Lie group by taking the Jordan decomposition of its adjoint map. For real algebraic Lie groups, some results of Mostow implies that the usual multiplicative Jordan decomposition coincides with the abstract Jordan decomposition. Here, for a semisimple linear Lie group, we obtain this fact by elementary methods. We also obtain the corresponding results for semisimple linear Lie algebras. Complete and simple proofs of these facts are lacking in the literature, so that the main purpose of this article is to fill this gap.