A note on the jordan decomposition

The multiplicative Jordan decomposition of a linear isomorphism of Rn into its elliptic, hyperbolic and unipotent components is well know. One can define an abstract Jordan decomposition of an element of a Lie group by taking the Jordan decomposition of its adjoint map. For real algebraic Lie groups...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Patrão,Mauro, Santos,Laércio, Seco,Lucas
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2011
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000100011
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172011000100011
record_format dspace
spelling oai:scielo:S0716-091720110001000112018-10-30A note on the jordan decompositionPatrão,MauroSantos,LaércioSeco,LucasThe multiplicative Jordan decomposition of a linear isomorphism of Rn into its elliptic, hyperbolic and unipotent components is well know. One can define an abstract Jordan decomposition of an element of a Lie group by taking the Jordan decomposition of its adjoint map. For real algebraic Lie groups, some results of Mostow implies that the usual multiplicative Jordan decomposition coincides with the abstract Jordan decomposition. Here, for a semisimple linear Lie group, we obtain this fact by elementary methods. We also obtain the corresponding results for semisimple linear Lie algebras. Complete and simple proofs of these facts are lacking in the literature, so that the main purpose of this article is to fill this gap.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.30 n.1 20112011-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000100011en10.4067/S0716-09172011000100011
institution Scielo Chile
collection Scielo Chile
language English
description The multiplicative Jordan decomposition of a linear isomorphism of Rn into its elliptic, hyperbolic and unipotent components is well know. One can define an abstract Jordan decomposition of an element of a Lie group by taking the Jordan decomposition of its adjoint map. For real algebraic Lie groups, some results of Mostow implies that the usual multiplicative Jordan decomposition coincides with the abstract Jordan decomposition. Here, for a semisimple linear Lie group, we obtain this fact by elementary methods. We also obtain the corresponding results for semisimple linear Lie algebras. Complete and simple proofs of these facts are lacking in the literature, so that the main purpose of this article is to fill this gap.
author Patrão,Mauro
Santos,Laércio
Seco,Lucas
spellingShingle Patrão,Mauro
Santos,Laércio
Seco,Lucas
A note on the jordan decomposition
author_facet Patrão,Mauro
Santos,Laércio
Seco,Lucas
author_sort Patrão,Mauro
title A note on the jordan decomposition
title_short A note on the jordan decomposition
title_full A note on the jordan decomposition
title_fullStr A note on the jordan decomposition
title_full_unstemmed A note on the jordan decomposition
title_sort note on the jordan decomposition
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2011
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000100011
work_keys_str_mv AT patraomauro anoteonthejordandecomposition
AT santoslaercio anoteonthejordandecomposition
AT secolucas anoteonthejordandecomposition
AT patraomauro noteonthejordandecomposition
AT santoslaercio noteonthejordandecomposition
AT secolucas noteonthejordandecomposition
_version_ 1718439774916706304