Partial actions and quotient rings

In this paper we study the Martindale ring of α-quotients Q associated with the partial action (R, α). Among other results we extend the partial action to Q and prove that it can be identified with an ideal of Q, the Martindale ring of β-quotients of T, where (T, &#946...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ávila,Jesús
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2011
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172011000200006
record_format dspace
spelling oai:scielo:S0716-091720110002000062014-11-05Partial actions and quotient ringsÁvila,JesúsIn this paper we study the Martindale ring of α-quotients Q associated with the partial action (R, α). Among other results we extend the partial action to Q and prove that it can be identified with an ideal of Q, the Martindale ring of β-quotients of T, where (T, β) denotes the enveloping action of (R, α). We prove that, in general, (Q, β) is not the enveloping action of (Q, α) and study the relationship between the rings R, Q, T and Q. Finally, we establish some properties related to the center of Q and the extended α-centroid of R.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.30 n.2 20112011-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200006en10.4067/S0716-09172011000200006
institution Scielo Chile
collection Scielo Chile
language English
description In this paper we study the Martindale ring of α-quotients Q associated with the partial action (R, α). Among other results we extend the partial action to Q and prove that it can be identified with an ideal of Q, the Martindale ring of β-quotients of T, where (T, β) denotes the enveloping action of (R, α). We prove that, in general, (Q, β) is not the enveloping action of (Q, α) and study the relationship between the rings R, Q, T and Q. Finally, we establish some properties related to the center of Q and the extended α-centroid of R.
author Ávila,Jesús
spellingShingle Ávila,Jesús
Partial actions and quotient rings
author_facet Ávila,Jesús
author_sort Ávila,Jesús
title Partial actions and quotient rings
title_short Partial actions and quotient rings
title_full Partial actions and quotient rings
title_fullStr Partial actions and quotient rings
title_full_unstemmed Partial actions and quotient rings
title_sort partial actions and quotient rings
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2011
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200006
work_keys_str_mv AT avilajesus partialactionsandquotientrings
_version_ 1718439776700334080