Partial actions and quotient rings
In this paper we study the Martindale ring of α-quotients Q associated with the partial action (R, α). Among other results we extend the partial action to Q and prove that it can be identified with an ideal of Q, the Martindale ring of β-quotients of T, where (T, β...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2011
|
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172011000200006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720110002000062014-11-05Partial actions and quotient ringsÁvila,JesúsIn this paper we study the Martindale ring of α-quotients Q associated with the partial action (R, α). Among other results we extend the partial action to Q and prove that it can be identified with an ideal of Q, the Martindale ring of β-quotients of T, where (T, β) denotes the enveloping action of (R, α). We prove that, in general, (Q, β) is not the enveloping action of (Q, α) and study the relationship between the rings R, Q, T and Q. Finally, we establish some properties related to the center of Q and the extended α-centroid of R.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.30 n.2 20112011-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200006en10.4067/S0716-09172011000200006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
description |
In this paper we study the Martindale ring of α-quotients Q associated with the partial action (R, α). Among other results we extend the partial action to Q and prove that it can be identified with an ideal of Q, the Martindale ring of β-quotients of T, where (T, β) denotes the enveloping action of (R, α). We prove that, in general, (Q, β) is not the enveloping action of (Q, α) and study the relationship between the rings R, Q, T and Q. Finally, we establish some properties related to the center of Q and the extended α-centroid of R. |
author |
Ávila,Jesús |
spellingShingle |
Ávila,Jesús Partial actions and quotient rings |
author_facet |
Ávila,Jesús |
author_sort |
Ávila,Jesús |
title |
Partial actions and quotient rings |
title_short |
Partial actions and quotient rings |
title_full |
Partial actions and quotient rings |
title_fullStr |
Partial actions and quotient rings |
title_full_unstemmed |
Partial actions and quotient rings |
title_sort |
partial actions and quotient rings |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2011 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200006 |
work_keys_str_mv |
AT avilajesus partialactionsandquotientrings |
_version_ |
1718439776700334080 |