Lie algebras with complex structures having nilpotent eigenspaces
Let (g,[·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g,[*]J) with bracket [X * Y]J = 1/2 ([X,Y] â [JX, JY]). We consider here the case where these subalgebras are nilpotent and prove that the orig...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172011000200008 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720110002000082014-11-05Lie algebras with complex structures having nilpotent eigenspacesLicurgo Santos,Edson CarlosSan Martin,Luiz A. B Nilpotent and solvable Lie algebras complex structure Let (g,[·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g,[*]J) with bracket [X * Y]J = 1/2 ([X,Y] â [JX, JY]). We consider here the case where these subalgebras are nilpotent and prove that the original (g,[·,·]) Lie algebra must be solvable. We consider also the 6-dimensional case and determine explicitly the possible nilpotent Lie algebras (g,[*]J). Finally we produce several examples illustrating different situations, in particular we show that for each given s there exists g with complex structure J such that (g,[*]J) is s-step nilpotent. Similar examples of hypercomplex structures are also built.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.30 n.2 20112011-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200008en10.4067/S0716-09172011000200008 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Nilpotent and solvable Lie algebras complex structure |
spellingShingle |
Nilpotent and solvable Lie algebras complex structure Licurgo Santos,Edson Carlos San Martin,Luiz A. B Lie algebras with complex structures having nilpotent eigenspaces |
description |
Let (g,[·,·]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g,[*]J) with bracket [X * Y]J = 1/2 ([X,Y] â [JX, JY]). We consider here the case where these subalgebras are nilpotent and prove that the original (g,[·,·]) Lie algebra must be solvable. We consider also the 6-dimensional case and determine explicitly the possible nilpotent Lie algebras (g,[*]J). Finally we produce several examples illustrating different situations, in particular we show that for each given s there exists g with complex structure J such that (g,[*]J) is s-step nilpotent. Similar examples of hypercomplex structures are also built. |
author |
Licurgo Santos,Edson Carlos San Martin,Luiz A. B |
author_facet |
Licurgo Santos,Edson Carlos San Martin,Luiz A. B |
author_sort |
Licurgo Santos,Edson Carlos |
title |
Lie algebras with complex structures having nilpotent eigenspaces |
title_short |
Lie algebras with complex structures having nilpotent eigenspaces |
title_full |
Lie algebras with complex structures having nilpotent eigenspaces |
title_fullStr |
Lie algebras with complex structures having nilpotent eigenspaces |
title_full_unstemmed |
Lie algebras with complex structures having nilpotent eigenspaces |
title_sort |
lie algebras with complex structures having nilpotent eigenspaces |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2011 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200008 |
work_keys_str_mv |
AT licurgosantosedsoncarlos liealgebraswithcomplexstructureshavingnilpotenteigenspaces AT sanmartinluizab liealgebraswithcomplexstructureshavingnilpotenteigenspaces |
_version_ |
1718439777176387584 |