An extension of Sheffer polynomials
Sheffer [Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), pp.590-622] studied polynomial sets zero type and many authors investigated various properties and its applications. In the sequel to the study of Sheffer Polynomials, an attempt is made to generalize the Sheffer polyn...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200009 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172011000200009 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720110002000092014-11-05An extension of Sheffer polynomialsShukla,A. KRapeli,S. J Appell sets Differential operator Sheffer polynomials generalized Sheffer polynomials Sheffer [Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), pp.590-622] studied polynomial sets zero type and many authors investigated various properties and its applications. In the sequel to the study of Sheffer Polynomials, an attempt is made to generalize the Sheffer polynomials by using partial differential operator.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.30 n.2 20112011-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200009en10.4067/S0716-09172011000200009 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Appell sets Differential operator Sheffer polynomials generalized Sheffer polynomials |
spellingShingle |
Appell sets Differential operator Sheffer polynomials generalized Sheffer polynomials Shukla,A. K Rapeli,S. J An extension of Sheffer polynomials |
description |
Sheffer [Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), pp.590-622] studied polynomial sets zero type and many authors investigated various properties and its applications. In the sequel to the study of Sheffer Polynomials, an attempt is made to generalize the Sheffer polynomials by using partial differential operator. |
author |
Shukla,A. K Rapeli,S. J |
author_facet |
Shukla,A. K Rapeli,S. J |
author_sort |
Shukla,A. K |
title |
An extension of Sheffer polynomials |
title_short |
An extension of Sheffer polynomials |
title_full |
An extension of Sheffer polynomials |
title_fullStr |
An extension of Sheffer polynomials |
title_full_unstemmed |
An extension of Sheffer polynomials |
title_sort |
extension of sheffer polynomials |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2011 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000200009 |
work_keys_str_mv |
AT shuklaak anextensionofshefferpolynomials AT rapelisj anextensionofshefferpolynomials AT shuklaak extensionofshefferpolynomials AT rapelisj extensionofshefferpolynomials |
_version_ |
1718439777381908480 |