Evolution of Weyl's Gauge Invariant Geometry under Ricci Flow

There is a classical fact conjectured by Albert Einstein, that the presence of matter causes the curvature of space-time. However, even a vacant space-time can have a non-zero Weyl's curvature. For instance, such a condition can be found near black holes and in the zones where gravitation waves...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bahuguna,Sandeep K, Petwal,Kailash C
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000300005
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172011000300005
record_format dspace
spelling oai:scielo:S0716-091720110003000052012-06-18Evolution of Weyl's Gauge Invariant Geometry under Ricci FlowBahuguna,Sandeep KPetwal,Kailash C Diffusion Ricci flow (R.F.) Gauge Cosmos Weyl Tensor density Conformal rescaling pseudo vector There is a classical fact conjectured by Albert Einstein, that the presence of matter causes the curvature of space-time. However, even a vacant space-time can have a non-zero Weyl's curvature. For instance, such a condition can be found near black holes and in the zones where gravitation waves radiate. Getting inspirations from such a fabulous classical fact, authors have attempted to describe the purely differential geometric behaviour of Weyl's-Gauge invariant conceptions concerning to 4-dimensional structured cosmos. Under the well known Ricci flow (R.F.) techniques, various Weylian configurations have been evolved as heat diffusion equations, which can pave the way for new consequences in relativity theory and cosmology.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.30 n.3 20112011-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000300005en10.4067/S0716-09172011000300005
institution Scielo Chile
collection Scielo Chile
language English
topic Diffusion
Ricci flow (R.F.)
Gauge
Cosmos
Weyl
Tensor density
Conformal
rescaling
pseudo vector
spellingShingle Diffusion
Ricci flow (R.F.)
Gauge
Cosmos
Weyl
Tensor density
Conformal
rescaling
pseudo vector
Bahuguna,Sandeep K
Petwal,Kailash C
Evolution of Weyl's Gauge Invariant Geometry under Ricci Flow
description There is a classical fact conjectured by Albert Einstein, that the presence of matter causes the curvature of space-time. However, even a vacant space-time can have a non-zero Weyl's curvature. For instance, such a condition can be found near black holes and in the zones where gravitation waves radiate. Getting inspirations from such a fabulous classical fact, authors have attempted to describe the purely differential geometric behaviour of Weyl's-Gauge invariant conceptions concerning to 4-dimensional structured cosmos. Under the well known Ricci flow (R.F.) techniques, various Weylian configurations have been evolved as heat diffusion equations, which can pave the way for new consequences in relativity theory and cosmology.
author Bahuguna,Sandeep K
Petwal,Kailash C
author_facet Bahuguna,Sandeep K
Petwal,Kailash C
author_sort Bahuguna,Sandeep K
title Evolution of Weyl's Gauge Invariant Geometry under Ricci Flow
title_short Evolution of Weyl's Gauge Invariant Geometry under Ricci Flow
title_full Evolution of Weyl's Gauge Invariant Geometry under Ricci Flow
title_fullStr Evolution of Weyl's Gauge Invariant Geometry under Ricci Flow
title_full_unstemmed Evolution of Weyl's Gauge Invariant Geometry under Ricci Flow
title_sort evolution of weyl's gauge invariant geometry under ricci flow
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2011
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000300005
work_keys_str_mv AT bahugunasandeepk evolutionofweylsgaugeinvariantgeometryunderricciflow
AT petwalkailashc evolutionofweylsgaugeinvariantgeometryunderricciflow
_version_ 1718439778947432448