A Quantum Mechanical Proof of the Fourier Inversion Formula

The translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Tran...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castro,Nelson N. de O, Rojas,Jacqueline, Mendoza,Ramon
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000300010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Transform, using algebraic relations involving these operators (position and momentum), a few of Linear Algebra and Analysis, without resorting to the classical technics like Fubini's Theorem and Lebesgue's Dominated Convergence Theorem.