A Quantum Mechanical Proof of the Fourier Inversion Formula
The translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Tran...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000300010 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Transform, using algebraic relations involving these operators (position and momentum), a few of Linear Algebra and Analysis, without resorting to the classical technics like Fubini's Theorem and Lebesgue's Dominated Convergence Theorem. |
---|