A Quantum Mechanical Proof of the Fourier Inversion Formula

The translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Tran...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castro,Nelson N. de O, Rojas,Jacqueline, Mendoza,Ramon
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000300010
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172011000300010
record_format dspace
spelling oai:scielo:S0716-091720110003000102012-06-18A Quantum Mechanical Proof of the Fourier Inversion FormulaCastro,Nelson N. de ORojas,JacquelineMendoza,Ramon Fourier transform position operator momentum operator extension The translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Transform, using algebraic relations involving these operators (position and momentum), a few of Linear Algebra and Analysis, without resorting to the classical technics like Fubini's Theorem and Lebesgue's Dominated Convergence Theorem.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.30 n.3 20112011-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000300010en10.4067/S0716-09172011000300010
institution Scielo Chile
collection Scielo Chile
language English
topic Fourier transform
position operator
momentum operator
extension
spellingShingle Fourier transform
position operator
momentum operator
extension
Castro,Nelson N. de O
Rojas,Jacqueline
Mendoza,Ramon
A Quantum Mechanical Proof of the Fourier Inversion Formula
description The translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Transform, using algebraic relations involving these operators (position and momentum), a few of Linear Algebra and Analysis, without resorting to the classical technics like Fubini's Theorem and Lebesgue's Dominated Convergence Theorem.
author Castro,Nelson N. de O
Rojas,Jacqueline
Mendoza,Ramon
author_facet Castro,Nelson N. de O
Rojas,Jacqueline
Mendoza,Ramon
author_sort Castro,Nelson N. de O
title A Quantum Mechanical Proof of the Fourier Inversion Formula
title_short A Quantum Mechanical Proof of the Fourier Inversion Formula
title_full A Quantum Mechanical Proof of the Fourier Inversion Formula
title_fullStr A Quantum Mechanical Proof of the Fourier Inversion Formula
title_full_unstemmed A Quantum Mechanical Proof of the Fourier Inversion Formula
title_sort quantum mechanical proof of the fourier inversion formula
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2011
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172011000300010
work_keys_str_mv AT castronelsonndeo aquantummechanicalproofofthefourierinversionformula
AT rojasjacqueline aquantummechanicalproofofthefourierinversionformula
AT mendozaramon aquantummechanicalproofofthefourierinversionformula
AT castronelsonndeo quantummechanicalproofofthefourierinversionformula
AT rojasjacqueline quantummechanicalproofofthefourierinversionformula
AT mendozaramon quantummechanicalproofofthefourierinversionformula
_version_ 1718439780041097216