On the Gauss-Newton method for solving equations
We use a combination of the center-Lipschitz condition with the Lipschitz condition condition on the Frechet-derivative of the operator involved to provide a semilocal convergence analysis of the Gauss-Newton method to a solution of an equation. Using more precise estimates on the distances involved...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172012000100002 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720120001000022012-04-13On the Gauss-Newton method for solving equationsArgyros,Ioaniss KHitlout,Saïd Gauss-Newton method semilocal convergence Frechet- derivative Lipschitz/center-Lipschitz condition convergence domain We use a combination of the center-Lipschitz condition with the Lipschitz condition condition on the Frechet-derivative of the operator involved to provide a semilocal convergence analysis of the Gauss-Newton method to a solution of an equation. Using more precise estimates on the distances involved, under weaker hypotheses, and under the same computational cost, we provide an analysis of the Gauss- Newton method with the following advantages over the corresponding results in [8]: larger convergence domain; finer error estimates on the distances involved, and an at least as precise information on the location ofthe solutioninfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.31 n.1 20122012-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100002en10.4067/S0716-09172012000100002 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Gauss-Newton method semilocal convergence Frechet- derivative Lipschitz/center-Lipschitz condition convergence domain |
spellingShingle |
Gauss-Newton method semilocal convergence Frechet- derivative Lipschitz/center-Lipschitz condition convergence domain Argyros,Ioaniss K Hitlout,Saïd On the Gauss-Newton method for solving equations |
description |
We use a combination of the center-Lipschitz condition with the Lipschitz condition condition on the Frechet-derivative of the operator involved to provide a semilocal convergence analysis of the Gauss-Newton method to a solution of an equation. Using more precise estimates on the distances involved, under weaker hypotheses, and under the same computational cost, we provide an analysis of the Gauss- Newton method with the following advantages over the corresponding results in [8]: larger convergence domain; finer error estimates on the distances involved, and an at least as precise information on the location ofthe solution |
author |
Argyros,Ioaniss K Hitlout,Saïd |
author_facet |
Argyros,Ioaniss K Hitlout,Saïd |
author_sort |
Argyros,Ioaniss K |
title |
On the Gauss-Newton method for solving equations |
title_short |
On the Gauss-Newton method for solving equations |
title_full |
On the Gauss-Newton method for solving equations |
title_fullStr |
On the Gauss-Newton method for solving equations |
title_full_unstemmed |
On the Gauss-Newton method for solving equations |
title_sort |
on the gauss-newton method for solving equations |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2012 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100002 |
work_keys_str_mv |
AT argyrosioanissk onthegaussnewtonmethodforsolvingequations AT hitloutsaid onthegaussnewtonmethodforsolvingequations |
_version_ |
1718439780599988224 |