On the Gauss-Newton method for solving equations

We use a combination of the center-Lipschitz condition with the Lipschitz condition condition on the Frechet-derivative of the operator involved to provide a semilocal convergence analysis of the Gauss-Newton method to a solution of an equation. Using more precise estimates on the distances involved...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Argyros,Ioaniss K, Hitlout,Saïd
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172012000100002
record_format dspace
spelling oai:scielo:S0716-091720120001000022012-04-13On the Gauss-Newton method for solving equationsArgyros,Ioaniss KHitlout,Saïd Gauss-Newton method semilocal convergence Frechet- derivative Lipschitz/center-Lipschitz condition convergence domain We use a combination of the center-Lipschitz condition with the Lipschitz condition condition on the Frechet-derivative of the operator involved to provide a semilocal convergence analysis of the Gauss-Newton method to a solution of an equation. Using more precise estimates on the distances involved, under weaker hypotheses, and under the same computational cost, we provide an analysis of the Gauss- Newton method with the following advantages over the corresponding results in [8]: larger convergence domain; finer error estimates on the distances involved, and an at least as precise information on the location ofthe solutioninfo:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.31 n.1 20122012-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100002en10.4067/S0716-09172012000100002
institution Scielo Chile
collection Scielo Chile
language English
topic Gauss-Newton method
semilocal convergence
Frechet- derivative
Lipschitz/center-Lipschitz condition
convergence domain
spellingShingle Gauss-Newton method
semilocal convergence
Frechet- derivative
Lipschitz/center-Lipschitz condition
convergence domain
Argyros,Ioaniss K
Hitlout,Saïd
On the Gauss-Newton method for solving equations
description We use a combination of the center-Lipschitz condition with the Lipschitz condition condition on the Frechet-derivative of the operator involved to provide a semilocal convergence analysis of the Gauss-Newton method to a solution of an equation. Using more precise estimates on the distances involved, under weaker hypotheses, and under the same computational cost, we provide an analysis of the Gauss- Newton method with the following advantages over the corresponding results in [8]: larger convergence domain; finer error estimates on the distances involved, and an at least as precise information on the location ofthe solution
author Argyros,Ioaniss K
Hitlout,Saïd
author_facet Argyros,Ioaniss K
Hitlout,Saïd
author_sort Argyros,Ioaniss K
title On the Gauss-Newton method for solving equations
title_short On the Gauss-Newton method for solving equations
title_full On the Gauss-Newton method for solving equations
title_fullStr On the Gauss-Newton method for solving equations
title_full_unstemmed On the Gauss-Newton method for solving equations
title_sort on the gauss-newton method for solving equations
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100002
work_keys_str_mv AT argyrosioanissk onthegaussnewtonmethodforsolvingequations
AT hitloutsaid onthegaussnewtonmethodforsolvingequations
_version_ 1718439780599988224