A simple remark on fields of definition
Let K< L be an extension of fields, in characteristic zero, with L algebraically closed and let ¯K < L be the algebraic closure of K in L. Let X and Y be irreducible projective algebraic varieties, X defined over ¯K and Y defined over L, and let π : X →Y be a non-constant mo...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Let K< L be an extension of fields, in characteristic zero, with L algebraically closed and let ¯K < L be the algebraic closure of K in L. Let X and Y be irreducible projective algebraic varieties, X defined over ¯K and Y defined over L, and let π : X →Y be a non-constant morphism, defined over L. If we assume that ¯K ≠ L, then one may wonder if Y is definable over ¯K. In the case that K = Q, L = C and that X and Y are smooth curves, a positive answer was obtained by Gonzalez-Diez. In this short note we provide simple conditions to have a positive answer to the above question. We also state a conjecture for a class of varieties of general type. |
---|