The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds

We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a description of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rosales-Ortega,José
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172012000100006
record_format dspace
spelling oai:scielo:S0716-091720120001000062012-04-13The signature in actions of semisimple Lie groups on pseudo-Riemannian manifoldsRosales-Ortega,José semisimple Lie groups bi-invariant metric local freeness We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a description of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the complexification of the Lie algebra associated to the group, and then we utilize it to prove a remark of Gromov.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.31 n.1 20122012-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100006en10.4067/S0716-09172012000100006
institution Scielo Chile
collection Scielo Chile
language English
topic semisimple Lie groups
bi-invariant metric
local freeness
spellingShingle semisimple Lie groups
bi-invariant metric
local freeness
Rosales-Ortega,José
The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds
description We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a description of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the complexification of the Lie algebra associated to the group, and then we utilize it to prove a remark of Gromov.
author Rosales-Ortega,José
author_facet Rosales-Ortega,José
author_sort Rosales-Ortega,José
title The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds
title_short The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds
title_full The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds
title_fullStr The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds
title_full_unstemmed The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds
title_sort signature in actions of semisimple lie groups on pseudo-riemannian manifolds
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100006
work_keys_str_mv AT rosalesortegajose thesignatureinactionsofsemisimpleliegroupsonpseudoriemannianmanifolds
AT rosalesortegajose signatureinactionsofsemisimpleliegroupsonpseudoriemannianmanifolds
_version_ 1718439781884493824