The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds
We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a description of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0716-09172012000100006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0716-091720120001000062012-04-13The signature in actions of semisimple Lie groups on pseudo-Riemannian manifoldsRosales-Ortega,José semisimple Lie groups bi-invariant metric local freeness We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a description of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the complexification of the Lie algebra associated to the group, and then we utilize it to prove a remark of Gromov.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.31 n.1 20122012-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100006en10.4067/S0716-09172012000100006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
semisimple Lie groups bi-invariant metric local freeness |
spellingShingle |
semisimple Lie groups bi-invariant metric local freeness Rosales-Ortega,José The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds |
description |
We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a description of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the complexification of the Lie algebra associated to the group, and then we utilize it to prove a remark of Gromov. |
author |
Rosales-Ortega,José |
author_facet |
Rosales-Ortega,José |
author_sort |
Rosales-Ortega,José |
title |
The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds |
title_short |
The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds |
title_full |
The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds |
title_fullStr |
The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds |
title_full_unstemmed |
The signature in actions of semisimple Lie groups on pseudo-Riemannian manifolds |
title_sort |
signature in actions of semisimple lie groups on pseudo-riemannian manifolds |
publisher |
Universidad Católica del Norte, Departamento de Matemáticas |
publishDate |
2012 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000100006 |
work_keys_str_mv |
AT rosalesortegajose thesignatureinactionsofsemisimpleliegroupsonpseudoriemannianmanifolds AT rosalesortegajose signatureinactionsofsemisimpleliegroupsonpseudoriemannianmanifolds |
_version_ |
1718439781884493824 |