Polar topologies on sequence spaces in non-archimedean analysis

The purpose of the present paper is to develop a theory of a duality in sequence spaces over a non-archimedean vector space. We introduce polar topologies in such spaces, and we give basic results characterizing compact, C-compact, complete and AK -complete subsets related to these topologies.

Guardado en:
Detalles Bibliográficos
Autores principales: Ameziane Hassani,R, El Amrani,A, Babahed,M
Lenguaje:English
Publicado: Universidad Católica del Norte, Departamento de Matemáticas 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0716-09172012000200002
record_format dspace
spelling oai:scielo:S0716-091720120002000022012-07-18Polar topologies on sequence spaces in non-archimedean analysisAmeziane Hassani,REl Amrani,ABabahed,M Locally K-convex topologies non archimedean sequence spaces Schauder basis separated duality The purpose of the present paper is to develop a theory of a duality in sequence spaces over a non-archimedean vector space. We introduce polar topologies in such spaces, and we give basic results characterizing compact, C-compact, complete and AK -complete subsets related to these topologies.info:eu-repo/semantics/openAccessUniversidad Católica del Norte, Departamento de MatemáticasProyecciones (Antofagasta) v.31 n.2 20122012-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200002en10.4067/S0716-09172012000200002
institution Scielo Chile
collection Scielo Chile
language English
topic Locally K-convex topologies
non archimedean sequence spaces
Schauder basis
separated duality
spellingShingle Locally K-convex topologies
non archimedean sequence spaces
Schauder basis
separated duality
Ameziane Hassani,R
El Amrani,A
Babahed,M
Polar topologies on sequence spaces in non-archimedean analysis
description The purpose of the present paper is to develop a theory of a duality in sequence spaces over a non-archimedean vector space. We introduce polar topologies in such spaces, and we give basic results characterizing compact, C-compact, complete and AK -complete subsets related to these topologies.
author Ameziane Hassani,R
El Amrani,A
Babahed,M
author_facet Ameziane Hassani,R
El Amrani,A
Babahed,M
author_sort Ameziane Hassani,R
title Polar topologies on sequence spaces in non-archimedean analysis
title_short Polar topologies on sequence spaces in non-archimedean analysis
title_full Polar topologies on sequence spaces in non-archimedean analysis
title_fullStr Polar topologies on sequence spaces in non-archimedean analysis
title_full_unstemmed Polar topologies on sequence spaces in non-archimedean analysis
title_sort polar topologies on sequence spaces in non-archimedean analysis
publisher Universidad Católica del Norte, Departamento de Matemáticas
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200002
work_keys_str_mv AT amezianehassanir polartopologiesonsequencespacesinnonarchimedeananalysis
AT elamrania polartopologiesonsequencespacesinnonarchimedeananalysis
AT babahedm polartopologiesonsequencespacesinnonarchimedeananalysis
_version_ 1718439782853378048