Polar topologies on sequence spaces in non-archimedean analysis
The purpose of the present paper is to develop a theory of a duality in sequence spaces over a non-archimedean vector space. We introduce polar topologies in such spaces, and we give basic results characterizing compact, C-compact, complete and AK -complete subsets related to these topologies.
Guardado en:
Autores principales: | Ameziane Hassani,R, El Amrani,A, Babahed,M |
---|---|
Lenguaje: | English |
Publicado: |
Universidad Católica del Norte, Departamento de Matemáticas
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172012000200002 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Schauder basis in a locally K - convex space and perfect sequence spaces
por: Ameziane Hassani,R, et al.
Publicado: (2011) -
Sequentially spaces and the finest locally K-convex of topologies having the same onvergent sequences
por: Amrani,A. El
Publicado: (2018) -
Some hyperstability results of a p-radical functional equation related to quartic mappings in non-Archimedean Banach spaces
por: Nuino,Ahmed, et al.
Publicado: (2021) -
Some hyperstability results of a p-radical functional equation related to Drygas mappings in non-Archimedean Banach spaces
por: Hryrou,Mustapha Esseghyr, et al.
Publicado: (2021) -
Cosine families of operators in a class of Fréchet spaces
por: Hassani,Rachid Ameziane, et al.
Publicado: (2018)